
ENDOMETRIAL CANCER: MOLECULAR CLASSIFICATION AND MANAGEMENT IMPLICATIONS

DR MR MAKWELA MEMAGO 2019

- Introduction
- Current classification
- Molecular classification
- Management Implications

ENDOMETRIAL CANCER

- Most common gynaecological malignancy
- 6th leading cause of cancer-related death among women in USA
 - 11 350 deaths in 2018
- Increasing incidence
 - Increasing rates of obesity
 - Aging of population
- Early presentation with abnormal uterine bleeding
 - Early stage at diagnosis
 - Favourable outcome (75 90% 5 year survival)
- 90% of cases are sporadic

(Bastiaan G, Current Onc Reports 2019)

ENDOMETRIAL CANCER

• Treatment

- Surgical staging
- Clinicopathological risk factors
 - Age
 - Histological type
 - Stage
 - Grade
 - LVSI
- Radiation +/- chemotherapy

(Bendifallah S, Brit. J. Cancer, 2015)

ENDOMETRIAL CANCER

- 3 distinct but overlapping dimensions used to categorize EC
 - Pathogenetic
 - Histopathological
 - Molecular

Pathogenetic

- Bokhman 1983
- Dualistic model based on presence or absence of
 - Obesity
 - Hyperlipidaemia
 - Signs of hyperoestrogenism
- Types I
- Type II

(Bell DW, Annu. Rev. Pathol. Mech. Dis, 2019)

Pathogenetic

Type I

- High/moderate degree of differentiation
- Superficial myometrial invasion
- Frequent progesterone sensitivity
- Favourable prognosis

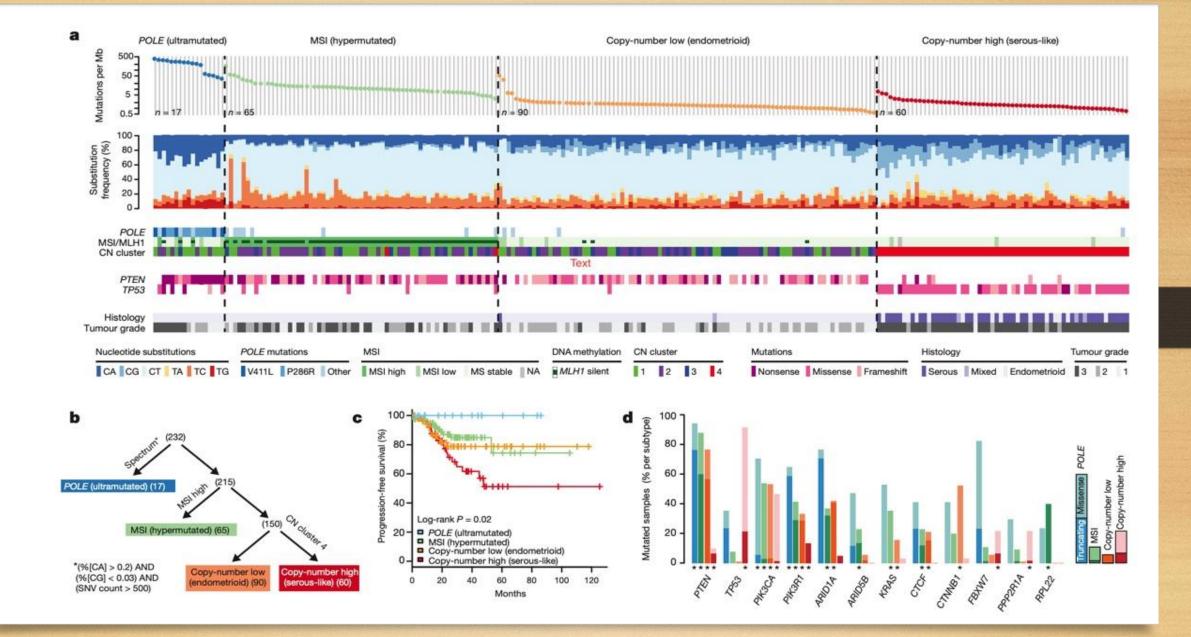
Type II

- Poorly differentiated
- Deep myometrial invasion
- Lower rates of progesterone sensitivity
- Propensity for lymph node metastases
- Unfavourable prognosis

Histopathology

- Based on light microscopic features using WHO classification system
 - Endometrioid carcinoma and its variants
 - Mucinous carcinoma
 - Serous carcinoma
 - Clear cell carcinoma
 - Carcinosarcomas, Mixed-cell, Un/Dedifferentiated
- 3 architectural grades, 1-3
 - < 5%
 - 6-50%
 - > 50%

In clinical practice


- Less than perfect correlation between histopathologic and pathogenetic subtypes
- Assignment of histopathological type can be difficult in cases of morphological ambiguity
- Minority of EC may exhibit shared characteristics
 - 50% of grade 3 exhibit TP53 mutations rare in the low grade tumours
- Determining grade is not always clear cut
 - Degree and extent of nuclear atypia sufficient to change grade
 - Intra/inter observer reproducibility is poor (Murali R, J Natl Compr Canc Netw, 2018)

In clinical practice

- Challenges
 - Accurate prognostic assessment
 - Selecting optimal treatment
 - Comparison of treatment interventions
 - Determining eligibility for clinical trials

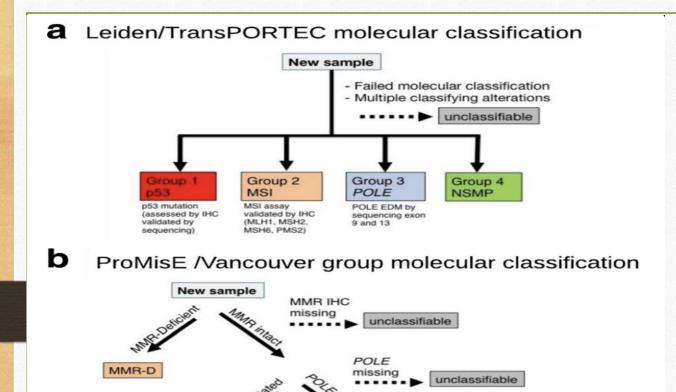
Molecular pathogenesis

- The Cancer Genome Atlas (TCGA) Nature, 2013
 - Genomic and proteomic analysis of endometrial cancers
- 4 distinct molecular subgroups
 - POLE mutated
 - Microsatellite unstable
 - Copy number low
 - Copy number high
- Correlated with PFS
- Endometrioid histology populate all 4 subgroups
- Serous cancers almost exclusively in the "Copy number high" subgroup

- 1. PI3K-PTEN-mTOR pathway
- 2. RAS-MEK-ERK pathway
- 3. WNT-B-catenin pathway
- 4. High rate of MSI reflects defects in MMR
- 5. High incidence of POLE mutations

(Bell DW, Annu. Rev. Pathol. Mech. Dis, 2019)

- PI3K-PTEN-mTOR pathway
 - Regulates cell growth, survival, protein synthesis and metabolism
 - 80 95%
 - PTEN mutation is an early event
 - Loss of antagonization of PI3K accumulation of phosphorylated AKT
 - Promotes growth factor mediated cell survival
 - Overcomes cell cycle arrest in G1/2 phases
 - Promotes angiogenesis


• RAS-MEK-ERK

- Key regulator of cell proliferation, survival and differentiation
- 15 24%
- Mutation in KRAS gene is predominant pathway
- Associated with co-occurring alterations in PTEN
- WNT-*B* catenin pathway
 - Regulates cell proliferation and migration
 - 19-37%
 - More common in microsatellite stable tumours

- Defects in MMR
 - 30%
 - Epigenetic silencing of MLH1 gene
 - Associated with higher tumour grade, LVSI and later-stage disease
- POLE mutations
 - 5%
 - more frequent in high grade carcinomas
 - Associated with a favourable prognosis

Serous carcinoma

- Relatively mutationally quiet
- High rates of copy number alterations
- > 85% have TP53 mutations / stabilization of p53 protein
- Lower frequencies of mutations in PTEN and PI3K pathways

• 4 prognostically distinct molecular subgroups

- Can be applied to diagnostic specimens
- Similar survival curves observed with TCGA

(Stello E, Clin. Cancer Res. 2016, Talhouk A, Cancer. 2016)

Fig. 1 Schematic of the **a** Leiden/TransPORTEC and **b** ProMisE/ Vancouver molecular classification systems including testing performed, molecular subgroups identified, and by what criteria cases would be considered unclassifiable

p53 wt

POLEEDM

p53 IHC missing

unclassifiable

Management implications

- Personalization of patient care
 - Selecting patients that will need comprehensive surgical staging
 - Selection of patients that need adjuvant treatment
 - Omitting adjuvant treatment in POLE-mutant cancers

Prognosis

- POLE subgroup has most favourable prognosis
- Copy number high associated with poorest prognosis

Management implications

- Targeted therapy
 - Candidates for immunotherapy
 - *POLE*-mutated and MMR-deficient tumours exhibit infiltrating lymphocytes, high levels of neoantigens and expression of immune checkpoint regulators
 - Immune checkpoint blockade with anti-PD1 antibody (Pembrolizumab)
 - Candidates for MAPK pathway inhibition
 - Several phase II trials underway

- Determining whether specific molecular features can be leveraged for patient prognosis and treatment
 - More evidence on selecting adjuvant treatment and targeted therapies based on molecular alterations in EC are needed

CONCLUSION

- Progression from broad categorization of tumours by anatomical site, to distinguishing subgroups by histomorphology and molecular features
- Endometrioid and serous cancers were classified by TCGA into 4 discrete molecular groups
- Increasing knowledge on prognostic significance and possible therapeutic options
- More evidence on treatment selection based on molecular classification is needed