

Enhanced recovery after surgery (ERAS) in gynecologic oncology: Everybody knows it but few have adopt it: Why?

DR. OMAR ALELWAN

SPECIALIST IN GYNECOLOGY & OBSTETRICS SPECIALIST IN GYNECOLOGIC ONCOLOGY (JORDANIAN ROYAL MEDICAL SERVICES)

The 4th MEMAGO Annual Congress in Association with the 1st Emirates Gynecological Oncology Conference

I have no disclosures

Survey result

Introduction

It is first developed by a colorectal surgeon called Henrik Kehlet from Denmark in the late 1990s.

- Enhanced Recovery After Surgery is a multidisciplinary, multimodal approach to the patients undergoing surgery.
- The main principle is to decrease the main effect of the surgery on the endocrine and metabolic response which leads to early recovery.

ERAS®Society 2010

A few centers forms the Society

ERAS®Society 2016

100+ units in 20+ countries

Opportunities: Does ERAS work?

Shorter LOS -2.28 days [95 % CI -3.1 to -1.5]

	Experimental			Control			Mean Difference		Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI		
Anderson 2003 (30)	3.9	1.8	14	7	2	11	6.9%	-3.10 [-4.61, -1.59]			
Delaney 2003 (31)	5.2	2.5	31	5.8	3	33	7.2%	-0.60 [-1.95, 0.75]			
Garcia-Botello 2011 (32)	4.15	2.2	61	9.23	7	58	6.1%	-5.08 [-6.96, -3.20]			
Gatt 2005 (33)	6.6	4.4	19	9	4.6	20	4.3%	-2.40 [-5.22, 0.42]			
Ionescu 2009 (34)	6.43	3.41	48	9.16	2.67	48	7.5%	-2.73 [-3.96, -1.50]			
Khoo 2007 (35)	5	8.5	35	7	14.7	35	1.7%	-2.00 [-7.63, 3.63]			
Muller 2009 (37)	6.7	4.8	76	10.3	4.9	75	6.8%	-3.60 [-5.15, -2.05]			
Ren 2012 (13)	5.7	1.6	299	6.6	2.4	298	8.9%	-0.90 [-1.23, -0.57]	*		
Serclova 2009 (38)	7.4	1.3	51	10.4	3.1	52	8.1%	-3.00 [-3.92, -2.08]			
Vlug 2011 LPS (12)	5	2.9	100	6	2.9	109	8.3%	-1.00 [-1.79, -0.21]			
Vlug 2011 LPT (12)	7	4.4	93	7	5.2	98	7.2%	0.00 [-1.36, 1.36]			
WANG 2012 LPS (41)	5.2	3.9	40	6.3	4.7	40	6.0%	-1.10 [-2.99, 0.79]			
WANG 2012 LPT (41)	6.5	4.1	41	7.4	4.2	42	6.3%	-0.90 [-2.69, 0.89]			
Wang G 2011 (14)	5.1	3.1	106	7.6	4.8	104	7.7%	-2.50 [-3.60, -1.40]			
Yang 2012 (40)	6	1	32	11.7	3.8	30	7.1%	-5.70 [-7.10, -4.30]			
Total (95% CI)	1046 1053			100.0%	-2.28 [-3.09, -1.47]	•					
Heterogeneity: Tau ² = 1.90	0; Chi ² =	98.88.	df = 14	4 (P < 0	.00001); l ² = 8	36%				
Test for overall effect: Z =	5.50 (P	< 0.000	001)	248 288				F	-10 -5 0 5 10 avours experimental Favours control		

Fig. 6 Pooled estimates of length of hospital stay comparing enhanced recovery after surgery versus standard care. CI confidence interval, df degrees of freedom, RR risk ratio

Greco et al W J Surg 2014

Opportunities: Does ERAS work?

Reduction of complications in total 40%

	Experimental		Control			Risk Ratio	Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI			
Anderson 2003 (30)	4	14	6	11	4.9%	0.52 [0.19, 1.41]				
Delaney 2003 (31)	7	31	10	33	6.2%	0.75 [0.32, 1.71]				
Gatt 2005 (33)	9	19	15	20	10.5%	0.63 [0.37, 1.08]				
Lee 2011 (36)	6	46	14	54	5.8%	0.50 [0.21, 1.20]				
Muller 2009 (37)	16	76	47	75	11.9%	0.34 [0.21, 0.54]				
Ren 2012 (13)	28	299	29	298	11.4%	0.96 [0.59, 1.58]				
Serclova 2009 (38)	11	51	25	52	9.5%	0.45 [0.25, 0.81]				
Vlug 2011 (12)	33	193	33	207	12.5%	1.07 [0.69, 1.67]	+			
Wang G 2011 (14)	20	106	39	104	12.0%	0.50 [0.32, 0.80]				
Wang G 2012 (39)	10	81	16	82	7.5%	0.63 [0.31, 1.31]				
Wang G 2012 (41)	6	49	10	50	5.3%	0.61 [0.24, 1.56]				
Wang Q 2012 (29)	2	40	8	38	2.5%	0.24 [0.05, 1.05]				
Total (95% CI)		1005		1024	100.0%	0.60 [0.46, 0.76]	•			
Total events	152		252							
Heterogeneity: Tau ² =	0.08; Chi2	= 19.54,	df = 11 (P = 0.0	5); l ² = 44	%				
Test for overall effect:	Z = 4.07 (F	P < 0.000	D1)	Fa	vours experimental Favours control					

Fig. 1 Pooled estimates of overall morbidity comparing enhanced recovery after surgery versus standard care. CI confidence interval, df degrees of freedom, RR risk ratio

Greco et al W J Surg 2014

phases

Preoperative Phase. Intraoperative Phase. Postoperative Phase.

Preoperative Phase

- **Stop smoking at least one month before surgery.**
- > Do not drink alcohol for 24 hours prior to surgery.
- Vitamins and herbal supplements should be stopped two weeks before procedure.
- Stop all NSAIDs (ibuprofen, aspirin) one week prior to surgery.

Preoperative Phase

Shower with the antibacterial soap (chlorhexidine) before bed and again in the morning to decrease the risk for infection.

Thromboembolism prophylaxis should be given preoperatively, combined with mechanical methods, and continued post-operatively.

Prophylactic antibiotics within 1h before skin incision (usually at the time of anesthesia induction) broad spectrum such as Cefazolin and must be repeated in prolonged operations and in case of blood loss >1500 ml.

NICE, Clinical Guideline 92. Reducing the risk of venous thromboembolism (deep vein thrombosis and pulmonary embolism) in patients admitted to hospital, www.nice.org.uk/cg92 2010.

Bulletins–Gynecology, A.C.o.P., ACOG Practice Bulletin No. 104: antibiotic proplaxis for gynecologic procedures, Obstet. Gynecol. 113 (5) (2009) 1180–1189.

Preoperative Phase

> Routine oral mechanical bowel preparation should not be used .

Preoperative fasting time to be kept to a minimum.

Patients should be permitted to drink clear fluids until 2 h before anesthesia and surgery and abstain from solids 6 h prior to induction of anesthesia.

> Oral carbohydrate loading beverages for example:

The day before surgery drink one bottle by 8 p.m. and another at bedtime. final bottle at the morning of surgery 2 hours before .

Beverage	Mfg/Available In	Total Carb (g)	Maltodextrin (g)	% Carb	Calories	Volume (ml)	Osm					
Carbohydrate-Rich Beverages Of Enhanced Recovery Programs Around The World*												
Clearfast®	BevMD/USA	50	44	14	200	355	270					
Arginaid® H2O	Nestle/Japan	52	52	18	200	250	200					
Fortijuice®	Nutricia/UK	67	40.8	24-34	300	200	750-955					
Maxijul®	Nutricia/UK/EUR	47.5	43.25	32	190	150	420					
Nidex®	Nestle/Brazil	50	50	12.5	200	400	200					
0NS400®	Fresenius Kabi/ Germany	50	50	12.5	200	400	200					
ONS300®	Fresenius Kabi/ Germany	50	50	16.6	200	300	266					
Polycal® Liquid	Nutricia/UK	122	98.4	61	494	200	845- 1400					
Pre0p®	Nutricia/EUR/ Canada	50.4	40	12.5	200	400	260					
Preload®	Vitaflo/Nestle/UK	52	47.5	13	200	400	135					
Beverages Also Used												
Impact AR®	Nestle	45	0	18.5	340	237	930					
Ensure Clear®	Pepsico	43	0	21.5	200	200	700					
Pedialyte®	Pepsico	6	0	2.5	25	237	270					
Gatorade® Thirst Quencher	Pepsico	21	0	n/a	80	355mL	n/a					
G2 Gatorade®	Pepsico	7	0	n/a	30	355mL	n/a					
Lemonade	Country Time	35	0	12%	140	355mL	n/a					

*www.bevmd.com/compare-pre-op-beverages

Intraoperative Phase

Short acting anesthetic agents should be used to allow rapid awakening. The addition of regional anesthesia to general anesthesia is opioid sparing, helps reduce PONV, and allows more rapid awakening.

➢ A ventilation strategy using tidal volumes of 5−7 ml/kg with a PEEP of 4−6 cmH2O reduces postoperative pulmonary complications.

E. Futier, J.M. Constantin, C. Paugam-Burtz, J. Pascal, M. Eurin, A. Neuschwander, et al., A trial of intraoperative low-tidal-volume ventilation in abdominal surgery, N. Engl. J. Med. 369 (2013) 428–437.

Intraoperative Phase

Prevention of postoperative nausea and vomiting:

- Use regional anesthesia (rather than general anesthesia).
- Use of propofol for induction and maintenance of anesthesia
- Avoid nitrous oxide.
- Avoid volatile anesthetics.
- Minimize opioids.
- Adequate hydration, while avoiding excessive fluid.
- Using more than two antiemetic agents.

Intraoperative Phase

> Minimally invasive surgery (MIS), including vaginal surgery is preferred for appropriate patients when feasible.

Nasogastric tubes inserted during surgery should be removed before reversal of anesthesia.

Maintenance of normothermia with suitable active warming devices should be used routinely.

Postoperative Phase

- **Postoperative thromboembolism prophylaxis.**
- Balanced crystalloid solutions are preferred to 0.9% normal saline due to the cumulative risk of hyper-chloremic acidosis.
- Oral intake of fluid and food should be started the day of surgery whenever possible.
- Encourage to chew gum for 30 minutes every four hours for the first two days.

Postoperative Phase

> A multimodal analgesia strategy should be employed with the aim of reducing post-operative opioid requirement.

> Peritoneal drainage is not recommended routinely.

Urinary catheters should be used for postoperative bladder drainage for a short period preferably <24 h postoperatively.</p>

Early mobilization.

Guidelines for postoperative care in gynecologic/oncology surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations — Part IIa, G. Nelson et al

Conclusion

Carol Rees Parrish, M.S., R.D., Series Editor Enhanced Recovery After Surgery: If You Are Not Implementing it, Why Not?

It is a team work between the surgeons, anesthetists, nurses, and the patient. So there is many factors effect a successful ERAS protocol.

