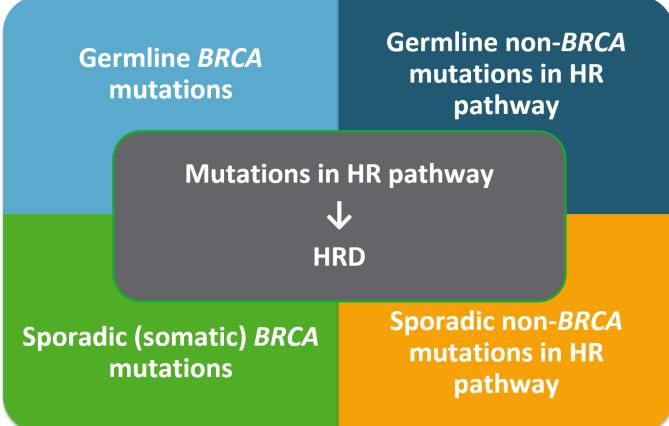
The role of PARP inhibitors in management of breast cancer

Danijela Jelovac, MD

Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University Baltimore, MD, USA

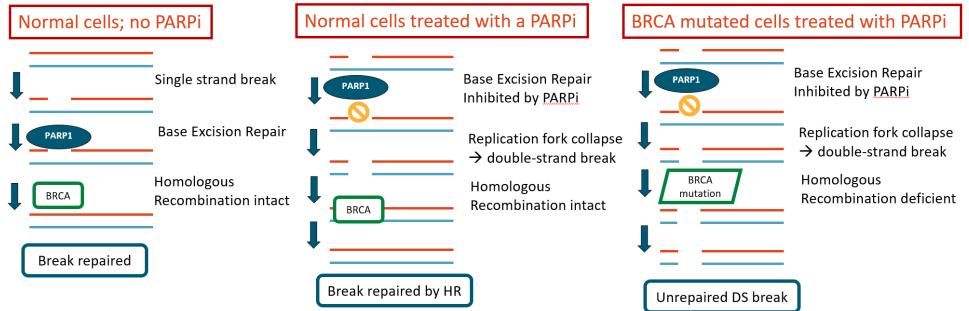
October 12th 2019.

No relevant disclosures

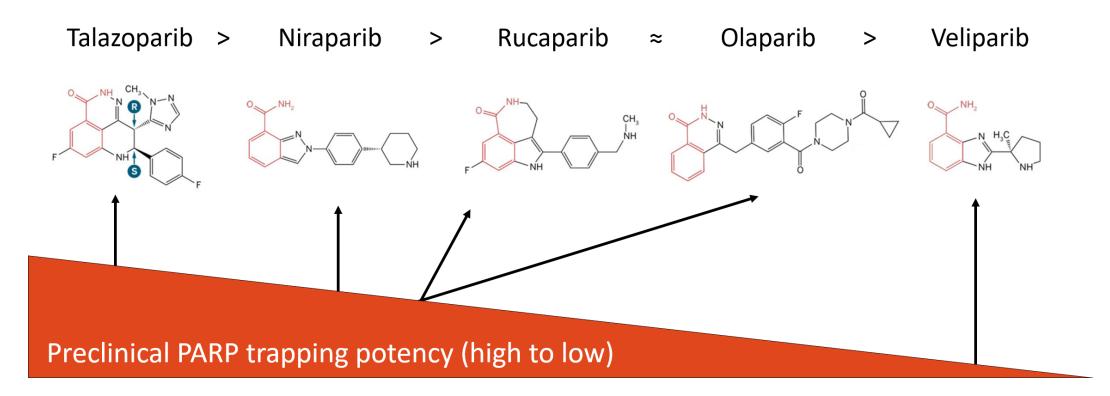

Learning Objectives

- Identify role of PARP inhibitors in management of metastatic breast cancer
- Discuss ongoing clinical trials with PARP inhibitors in early stage breast cancer and combination with other classes of drugs

How Common Are BRCA Mutations?


- General population (not AJ): ~ 1 in 400 (~ 0.25%)
 - Women with breast cancer (any age): 1 in 50 (2%)
 - Women with breast cancer (younger than 40 yrs): 1 in 10 (10%)
 - Men with breast cancer (any age): 1 in 20 (5%)
 - Women with ovarian cancer (any age): 1 in 8 to 1 in 10 (10% to 15%)
- General AJ population: 1 in 40 (2.5%)
 - AJ women with breast cancer (any age) 1 in 10 (10%)

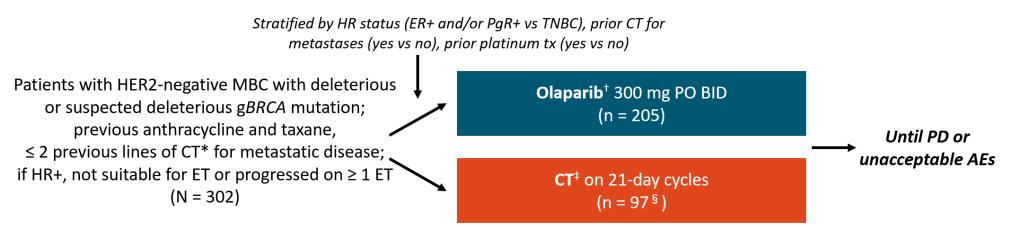
HRD and BRCA Mutations



HR-Deficient Cells Are More Susceptible to PARP Inhibition

- PARP inhibition prevents repair of SS DNA breaks \rightarrow DS DNA breaks
- BRCA1/2 critical for DNA repair of DS DNA breaks via homologous recombination
- Cells defective in BRCA1/2 are more sensitive to PARP inhibition
 - Cancer cells unable to repair double-stranded breaks die through apoptosis

PARP Inhibitors Target Tumors With Defects in Homologous Recombination


■ PARP trapped on DNA by PARPi; more trapping ≈ more potent

FDA-Approved PARP inhibitors for Metastatic Breast Cancer with germline BRCA

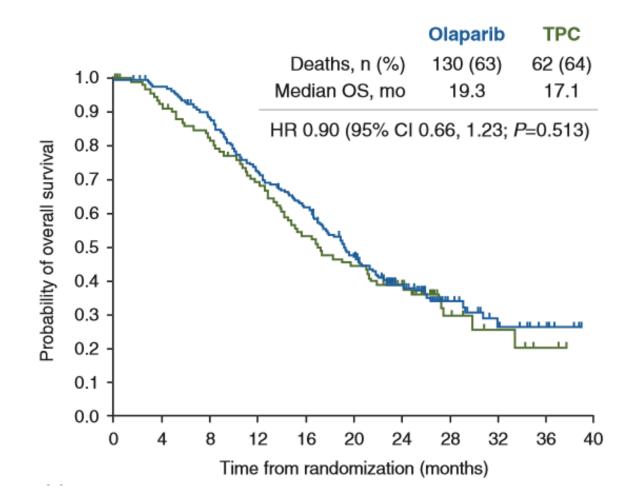
- <u>Olaparib</u>—approved in 1/2018 as a single agent for gBRCA-mutated HER2negative metastatic breast cancer (ER+ or TNBC)
- <u>Talazoparib</u>—approved in 10/2018 as a single agent for gBRCA-mutated HER2negative metastatic breast cancer (ER+ or TNBC)

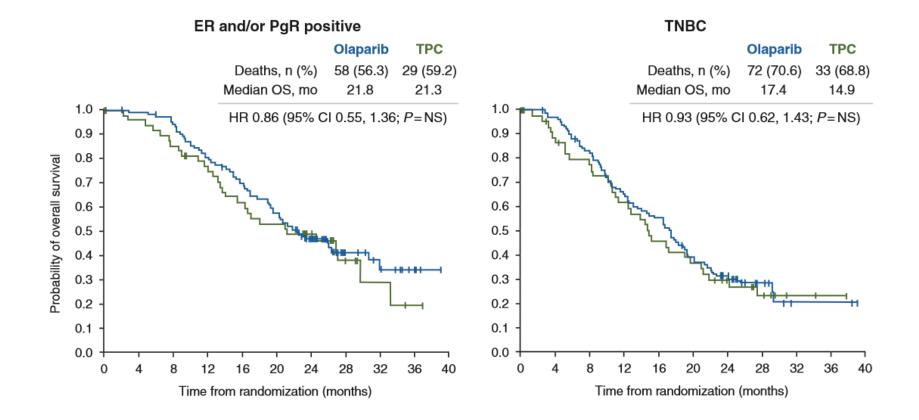
OlympiAD: Olaparib vs Chemotherapy in HER2-Negative MBC


Randomized, open-label phase III study

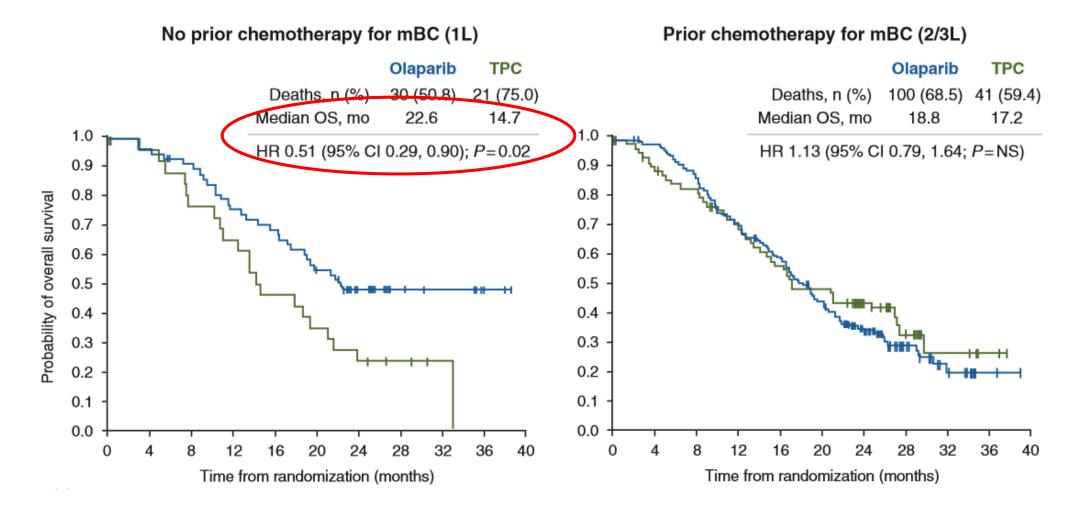
*If platinum-based therapy, patient could not have experienced progression on tx in advanced setting or ≥ 12 mos since (neo)adjuvant tx. [†]Tablet. [‡]Physician's choice of: capecitabine 2500 mg/m² PO Days 1-14; vinorelbine 30 mg/m² IV Days 1, 8; or eribulin 1.4 mg/m² IV Days 1, 8. [§] n = 6 patients declined treatment.

- Primary endpoint: PFS per modified RECIST 1.1 (BICR)
- Secondary endpoints: time to second progression/death, OS, ORR, safety, tolerability, global HRQoL


OlympiAD: PFS (Primary Endpoint)

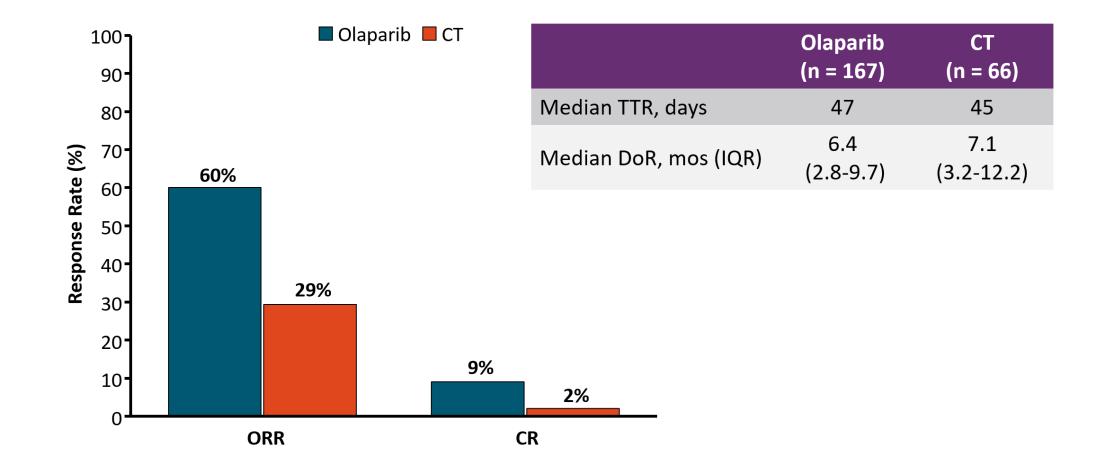

OlympiAD: PFS Subset Analysis

Subgroup	Olaparib	Standard Thera	ру	HR (95%	5 CI)		
Λ	o. of Patients W	/ith Events/Total no.	(%)				
All patients	163/205 (79.5)	71/97 (73.2)					0.58 (0.43-0.80)
Previous chemotherapy for metastatic breast cancer				-			
Yes	119/146 (81.5)	51/69 (73.9)		•			0.65 (0.47-0.91)
No	44/59 (74.6)	20/28 (71.4)					0.56 (0.34-0.98)
Hormone receptor status		/					
Hormone receptor positive	82/103 (79.6)	31/49 (63.3)					0.82 (0.55-1.26)
Triple negative	81/102 (79.4)	40/48 (83.3)		<u> </u>			0.43 (0.29-0.63)
Previous platinum-based therapy for breast cancer				•			
Yes	50/60 (83.3)	21/26 (80.8)					0.67 (0.41-1.14)
No	113/145 (77.9)	50/71 (70.4)					0.60 (0.43-0.84)
Measurable disease	120/165 (01 2)			•			
Yes	139/165 (84.2)	56/72 (77.8)					0.58 (0.43-0.80)
No Progressive disease at the time of randomization	24/40 (60.0)	15/25 (60.0)			<u> </u>		0.57 (0.30-1.12)
Yes	127/159 (79.9)	53/73 (72.6)					0.60 (0.43-0.83)
No	36/46 (78.3)	18/24 (75.0)					0.72 (0.41-1.30)
BRCA mutation type	50/40 (78.5)	18/24 (75.0)				-	0.72 (0.41-1.50)
BRCA1	94/114 (82.5)	41/50 (82.0)					0.54 (0.37-0.79)
BRCA2	64/84 (76.2)	30/45 (66.7)	-				0.68 (0.45-1.07)
Age	01/01 (/ 0.2/	30, 13 (0017)					0.00 (0.15 1.07)
< 65 yrs	154/194 (79.4)	67/93 (72.0)					0.66 (0.49-0.88)
≥ 65 yrs	9/11 (81.8)	4/4 (100)					Not calculated
Region	- / (/	-, - (<u>-</u>)					
Asia	46/59 (78.0)	21/28 (75.0)		_			0.57 (0.34-0.97)
Europe	77/97 (79.4)	34/35 (75.6)					0.71 (0.48-1.08)
North America and South America	40/49 (81.6)	16/24 (66.7)					0.39 (0.22-0.73)
Race				-			. ,
White	109/134 (81.3)	47/63 (74.6)			-		0.67 (0.48-0.95)
Other	54/71 (76.1)	24/34 <u>(70.6)</u>		•	<u> </u>		0.51 (0.32-0.85)
		0.125	0.250	0.500	1.000	2.000	
			Olaparik	-		etter	


OlympiAD: OS Analysis

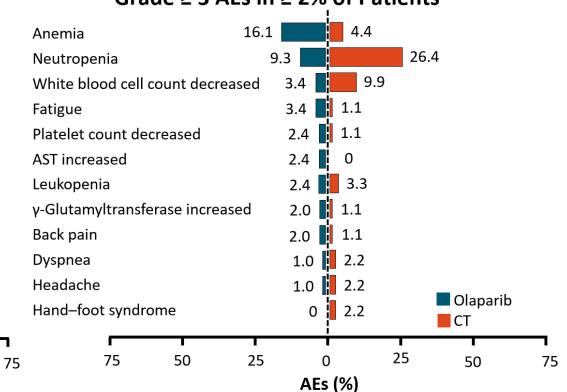
OlympiAD: OS for ER/PR and TNBC

OlympiAD: OS by Prior Chemotherapy With Olaparib vs CT in HER2-Negative MBC With gBRCA Mutation



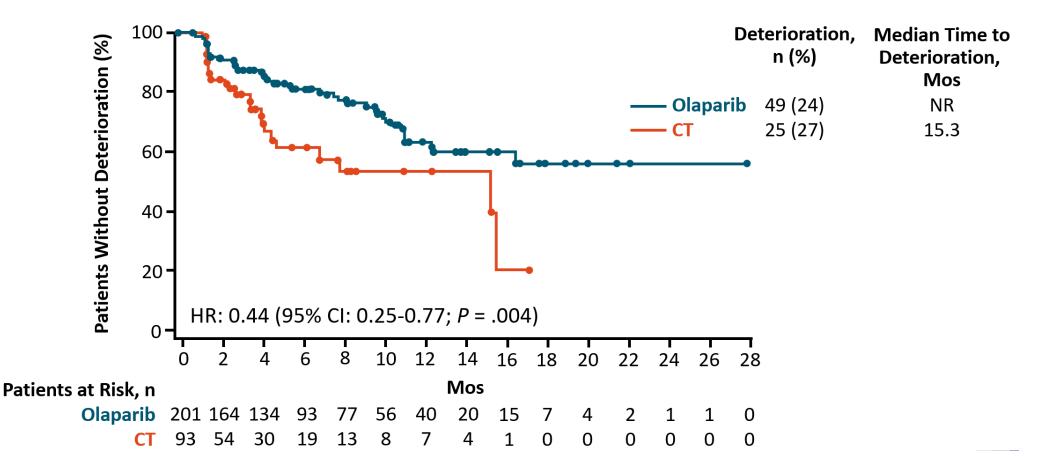
Robson. Ann Oncol 2019:30: 558-566.

OlympiAD: OS Subset Analysis

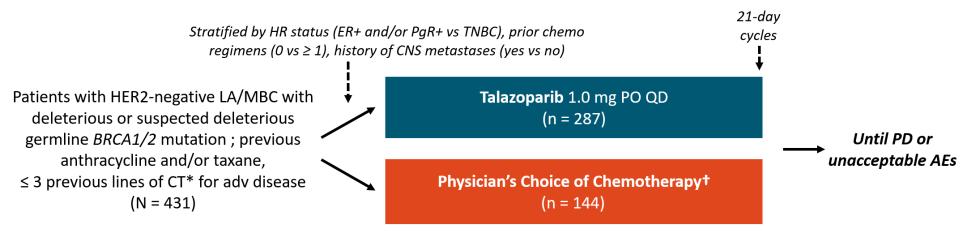

	Olaparib	TPC		
Subgroup	No of patients with	events/total no (%)	-	HR (95% CI)
All patients	130/205 (63%)	62/97 (64%)		0.90 (0.66, 1.23)
Received previous chemotherapy for	130/203 (03/8)	02/97 (0478)		0.90 (0.00, 1.23)
metastatic breast cancer				
Yes (2nd-/3rd-line)	100/146 (69%)	41/69 (59%)		1.13 (0.79, 1.64)
No (1st-line)	30/59 (51%)	21/28 (75%)		0.51 (0.29, 0.90)
Receptor status	, ,	, ,		
ER and/or PgR positive	58/103 (56%)	29/49 (59%)		0.86 (0.55, 1.36)
ER and PgR negative	72/102 (71%)	33/48 (69%)	⊢	0.93 (0.62, 1.43)
Prior platinum for BC	· · · ·	()		
Yes	42/60 (70%)	19/26 (73%)		0.83 (0.49, 1.45)
No	88/145 (61%)	43/71 (61%)		0.91 (0.64, 1.33)
Measurable vs non measurable disease	. ,	. ,		
Measurable	112/165 (68%)	50/72 (69%)	⊢ — – – – – – – – – – – – – – – – – – –	0.85 (0.61, 1.19)
Non-measurable	18/40 (45%)	12/25 (48%)		0.90 (0.44, 1.91)
Progressive disease at randomization		. ,		
Yes	102/159 (64%)	48/73 (66%)		0.85 (0.61, 1.20)
No	28/46 (61%)	14/24 (58%)		1.08 (0.58, 2.11)
BRCA mutation type				
BRCA1	78/114 (68%)	37/50 (74%)		0.83 (0.57, 1.25)
BRCA2	47/84 (56%)	25/45 (56%)		0.90 (0.56, 1.48)
Age, years				
<65	126/194 (65%)	59/93 (63%)	⊢	0.95 (0.70, 1.31)
≥65	4/11 (36%)	3/4 (75%)	NC	NC
Age, years				
< median 44	64/99 (65%)	28/39 (72%)	⊢	0.92 (0.60, 1.46)
≥ median 44	66/106 (62%)	34/58 (59%)	⊢ − − − − − − −	0.87 (0.58, 1.34)
Region				
Asia	33/59 (56%)	16/28 (57%)		0.96 (0.54, 1.79)
Europe	63/97 (65%)	29/45 (64%)	⊢	0.97 (0.63, 1.53)
North and South America	34/49 (69%)	17/24 (71%)		0.66 (0.38, 1.21)
Race				
White	89/134 (66%)	41/63 (65%)	⊢	0.90 (0.63, 1.32)
Other	41/71 (58%)	21/34 (62%)	⊢	0.89 (0.53, 1.53)
			0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2	
			Olaparib better TPC better	

OlympiAD: Overall Response

OlympiAD: Adverse Events


Any-Grade AEs in \geq 10% of Patients* Nausea 35.2 58.0 26.4 Anemia 40.0 Vomiting 15.4 32.2 Fatigue 29.8 24.2 Neutropenia 27.3 49.5 Cough 17.1 6.6 Decreased appetite 17.1 12.1 Back pain 8.8 14.6 Increased ALT 11.7 17.6 Increased AST 9.8 16.5 Alopecia 3.4 13.2 Olaparib Hand-foot syndrome 0.5 20.9 CT Т 25 75 50 25 0 50 AEs (%)

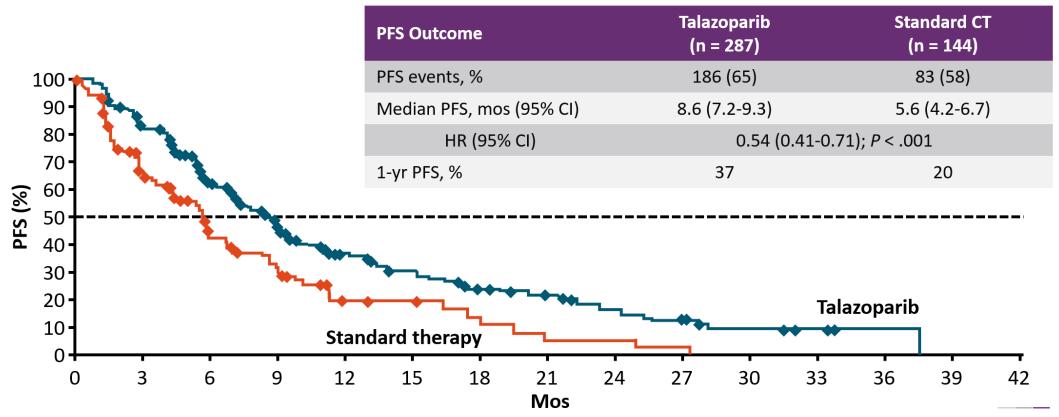
Grade \ge 3 AEs in \ge 2% of Patients


*AEs with \geq 5% difference in frequency between arms.

OlympiAD: Time to Deterioration of Global HRQoL

EMBRACA: Talazoparib vs Chemotherapy in Advanced *BRCA1/2*-Positive, HER2-Negative Breast Cancer

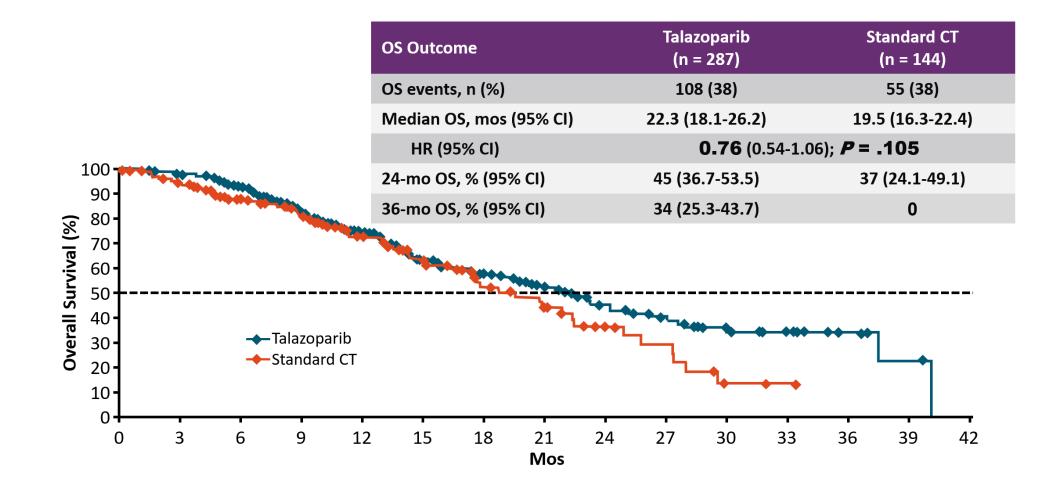
Randomized, open-label phase III study conducted at 145 sites in 16 countries



- Primary endpoint: PFS by BICR
- Secondary endpoints: ORR, OS, safety,
- Investigational endpoints: DoR, QoL

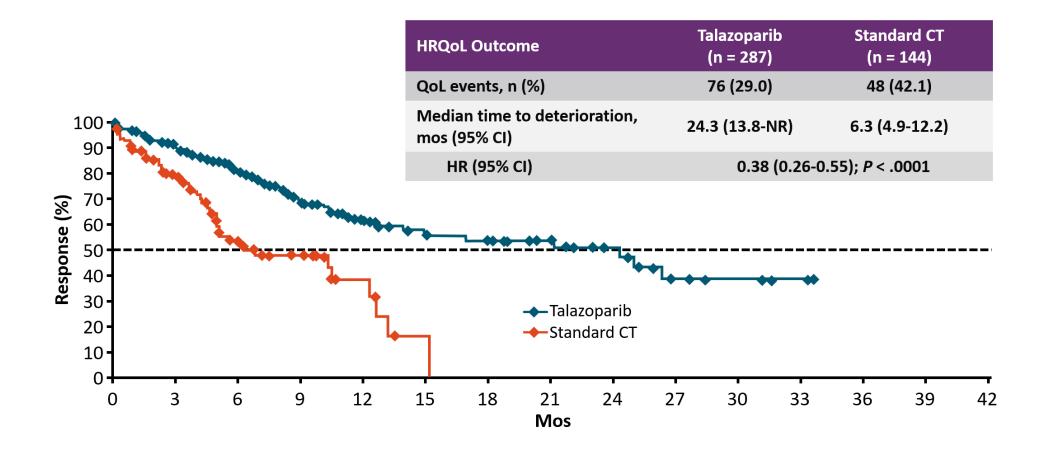
*Previous platinum-based therapy for EBC permitted if DFI \geq 6 mos [†]Physician's choice of: capecitabine 1250 mg/m² PO BID Days 1-14; eribulin 1.4 mg/m² IV Days 1, 8; gemcitabine 1250 mg/m² IV Days 1, 8; or vinorelbine 30 mg/m² IV Days 1, 8, and 15.

EMBRACA: PFS (Primary Endpoint)


Median follow-up time: 11.2 mos

EMBRACA: PFS by Patient Subgroup

Subgroup	No. of Patients (%)) HR for Disease Pro	gression or Death (95% CI)
All patients	431 (100)	⊢₩→	0.54 (0.41-0.71)
BRCA1 mutation type, according to central testing			
BRCA1	183 (42.5)	⊢	0.59 (0.39-0.90)
BRCA2	225 (52.2)		0.47 (0.32-0.70)
Hormone receptor status according to most recent biops		· -: · I	(, , , , , , , , , , , , , , , , , , ,
Triple-negative breast cancer	, 190 (44.1)	┝┿┳───┥│	0.60 (0.41-0.87)
Hormone receptor positive	241 (55.9)		0.47 (0.32-0.71)
History of CNS metastasis	2 · 2 (00:0)	· -: · · ·	
Yes	63 (14.6)		0.32 (0.15-0.68)
No	368 (85.4)		0.58 (0.43-0.78)
Visceral disease assessed by investigator	300 (03.4)		0.00 (0.40 0.70)
Yes	303 (70.3)		0.51 (0.37-0.70)
No	128 (29.7)		0.59 (0.34-1.02)
Previous platinum treatment	120 (23.7)		0.35 (0.54 1.02)
Yes	76 (17.6)		0.76 (0.40-1.45)
No	355 (82.4)		0.52 (0.39-0.71)
Previous regimens of cytotoxic chemotherapy for advanc			0.52 (0.55-0.71)
		. <u>L</u> .	0.57 (0.34-0.95)
0	165 (38.3) 161 (37.4)		· · · · ·
	161 (37.4)		0.51 (0.33-0.80)
≥2	105 (24.4)		0.56 (0.34-0.95)
		0 0.25 0.50 0.75 1.00 1	.25 1.50 1.75 2.00
		Talazoparib better	CT better


EMBRACA: OS Analysis

EMBRACA: Adverse Events

Adverse Event, n (%)	Talazopari	b (n = 286)	Standard C	CT (n = 126)		
	Any	Grade 3/4	Any	Grade 3/4		
Hematologic	194 (67.8)	157 (54.9)	63 (50.0)	48 (38.1)		
Anemia	151 (52.8)	112 (39.2)	23 (18.3)	6 (4.8)		
Neutropenia	99 (34.6)	60 (21.0)	54 (42.9)	44 (34.9)		
Thrombocytopenia	77 (26.9)	42 (14.7)	9 (7.1)	2 (1.6)		
Leukopenia	49 (17.1)	19 (6.6)	17 (13.5)	11 (8.7)		
Nonhematologic	282 (98.6)	91 (31.8)	123 (97.6)	48 (38.1)		
Fatigue	144 (50.3)	5 (1.7)	54 (42.9)	4 (3.2)		
Nausea	139 (48.6)	1 (0.3)	59 (46.8)	2 (1.6)		
Headache	93 (32.5)	5 (1.7)	28 (22.2)	1 (0.8)		
Vomiting	71 (24.8)	7 (2.4)	29 (23.0)	2 (1.6)		
Diarrhea	63 (22.0)	2 (0.7)	33 (26.2)	7 (5.6)		
Back pain	60 (21.0)	7 (2.4)	20 (15.9)	2 (1.6)		
PPE	4 (1.4)	5 (1.7)	28 (22.2)	3 (2.4)		

EMBRACA: Time to Deterioration of Global HRQoL

Ettl. Ann Oncol. 2018;29:1939.

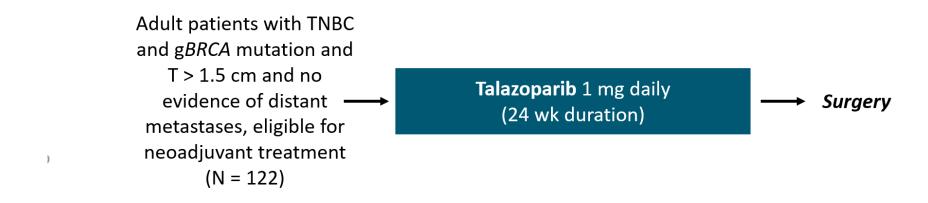
Comprehensive Cancer Network® NCCN Guidelines Version 1.2019 Invasive Breast Cancer

CHEMOTHERAPY REGIMENS FOR RECURRENT OR STAGE IV (M1) DISEASE^{a,b}

	HER2-Negative	HER2-Positive ^g
Preferred regimens • Anthracyclines • Doxorubicin • Liposomal doxorubicin • Taxanes • Paclitaxel • Anti-metabolites • Capecitabine • Gemcitabine • Microtubule inhibitors • Vinorelbine • Eribulin	 PARP inhibitors (options for patients with HER2- negative tumors and germline BRCA1/2 mutation)^d Olaparib^d (category 1) Talazoparib^d (category 1) Platinum (option for patients with triple-negative tumors and germline BRCA1/2 mutation)^d Carboplatin Cisplatin Atezolizumab + albumin-bound paclitaxel (option for patients with PD-L1-positive TNBC)^e 	Preferred regimens • Pertuzumab + trastuzumab + docetaxel (category 1) ^h • Pertuzumab + trastuzumab + paclitaxel ^g Other recommended regimens: • Ado-trastuzumab emtansine (T-DM1) • Trastuzumab + paclitaxel ^h ± carboplatin • Trastuzumab + docetaxel ^h • Trastuzumab + vinorelbine ^h • Trastuzumab + capecitabine • Lapatinib + capecitabine • Trastuzumab + lapatinib (without cytotoxic therapy) • Trastuzumab + other agents ^{h,i,j}
Other recommended regime • Cyclophosphamide • Docetaxel • Albumin-bound paclitaxel Useful in certain circumsta	 Epirubicin Ixabepilone 	
 AC (doxorubicin/cyclophol) EC (epirubicin/cyclophos) CMF (cyclophosphamide/ methotrexate/fluorouracil) 	• GT (gemcitabine/paclitaxel) • Gemcitabine/carboplatin	

Future Directions of PARP Inhibitors in Management Of Breast Cancer

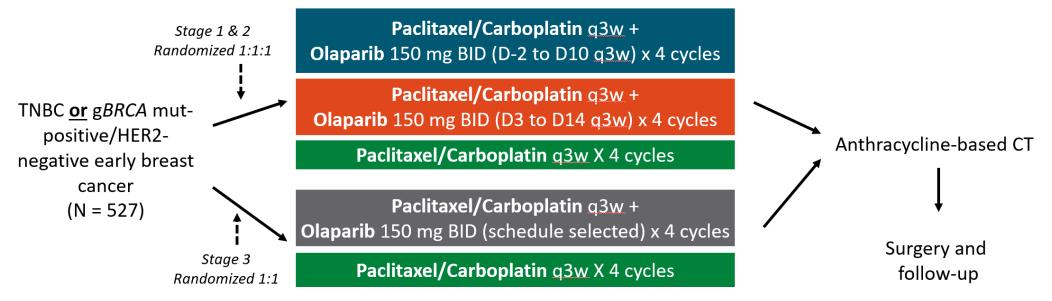
- Early stage breast cancer
 - Neoadjuvant (MDACC, NEOTALA, PARTNER)
 - Adjuvant (OlimpiaA)
- Combination therapy
 - With chemotherapy (BROCADE3)
 - With checkpoint inhibitors (TOPACIO, MEDIOLA)
 - With other agents
- Expanding beyond germline BRCA mutation (LUCY, RUBY)


Neoadjuvant PARP Inhibitor Trials in Breast Cancer

PARP Inhibitor (Dose)	Trial	Patient Population	Treatment Arms	Sample Size, n	Results
Veliparib (50 mg BID) ^[1]	I-SPY 2 (phase II)*	Stage II-III TNBC	 Veliparib + Q3 IV carboplatin (AUC dose = 6) + QW IV 80 mg/m² paclitaxel QW IV 80 mg/m² paclitaxel 	39 21	pCR: 51% pCR: 26%
Veliparib (50 mg BID) ^[2]	BrighTNess (phase III)*	Stage II-III TNBC (15% gBRCA +)	 Veliparib + Q3 IV carboplatin (AUC dose = 6) + QW IV 80 mg/m² paclitaxel Placebo + Q3 IV carboplatin (AUC dose = 6) + QW IV 80 mg/m² paclitaxel QW IV 80 mg/m² paclitaxel 	316 160 158	pCR: 53% pCR: 58% pCR: 31%
Talazoparib (1 mg daily) ^[3]	MDACC (pilot)	Stage I-III gBRCA + (69% TNBC)	Talazoparib x 2 mos followed by standard NAC	13	88% decrease in tumor volume pCR: 54% after NAC
Talazoparib (1 mg daily) ^[4]	MDACC (pilot phase II)	Stage I-III gBRCA + (74% TNBC)	Talazoparib x 6 mos followed by surgery (adjuvant therapy as per physician's choice)	19 ⁺	pCR: 53% RCB 0+I: 63% (pCR in pts with lobular, metaplastic and IBC)

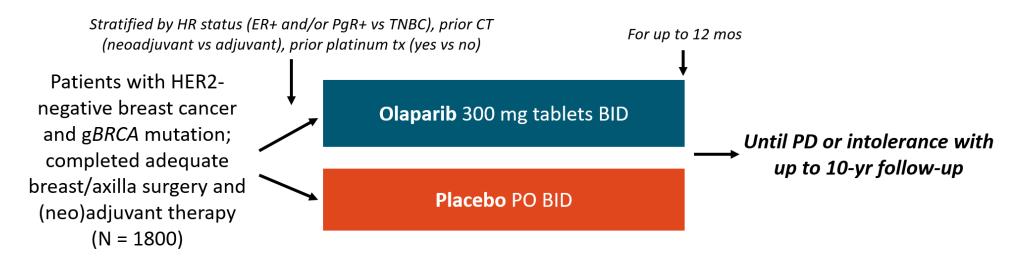
*All patients in I-SPY2 and BrighTNess additionally received doxorubicin and cyclophosphamide every 2-3 wks for 4 cycles before surgery. *20 patients enrolled; 19 completed study.

Talazoparib as Neoadjuvant Treatment for gBRCA Mutation-Positive Early TNBC (NEOTALA)

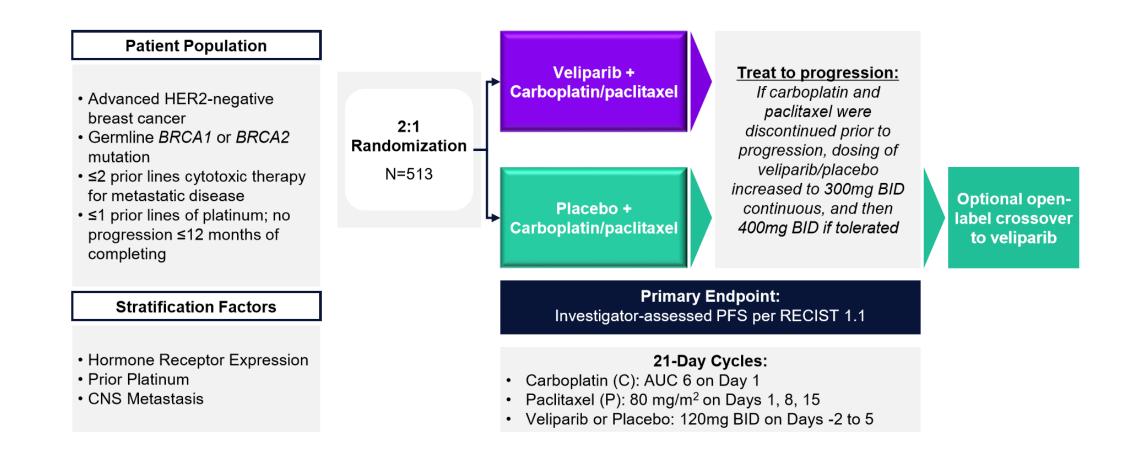

Open-label, multicenter phase II study

- Primary endpoint: pCR by independent central review
- Secondary endpoints: pCR by investigator, RCB, pCR in breast by independent reviewer, EFS, OS, safety, PROs, pharmacokinetics

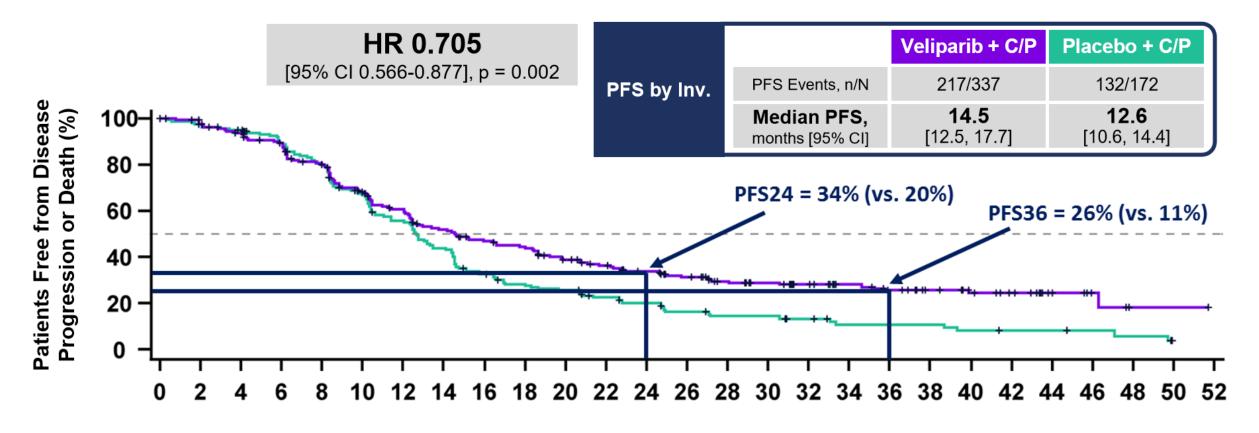
Neoadjuvant Platinum-based CT + Olaparib in TNBC and/or gBRCA Mutation–Positive EBC (PARTNER)


Open-label, randomized, 3-stage phase II/III study

- Stage 1 primary endpoint: safety
- Stage2 primary endpoint: pCR and completion rate of olaparib
- Stage 3 primary endpoint: pCR by central review

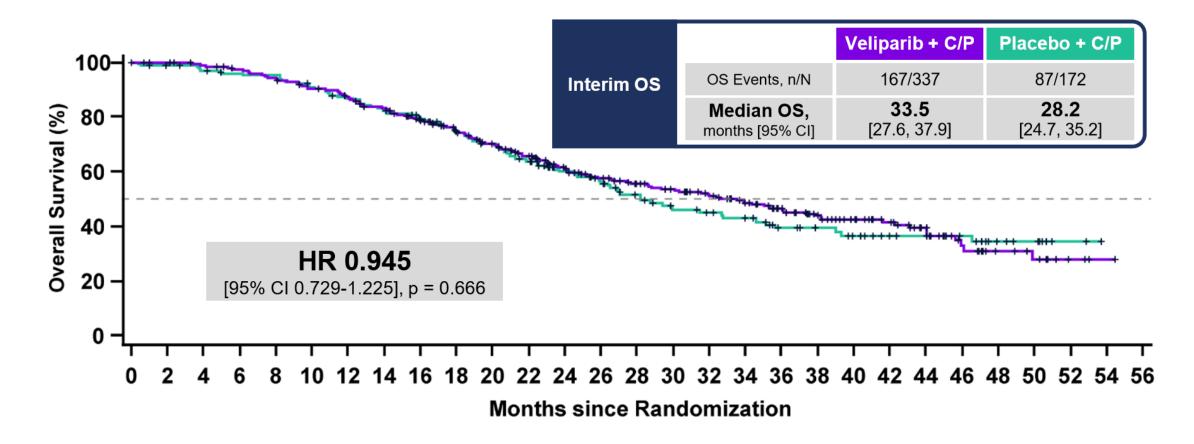

Olaparib vs Placebo as Adjuvant Therapy in HER2-/gBRCA Mutation-Positive EBC (OlympiA)

Randomized, double-blind, placebo-controlled, multicenter phase III study



- Primary endpoint: invasive DFS
- Secondary endpoints: distant DFS, OS, safety, QoL
- Fully accrued: results expected in 2020

Carboplatin/Paclitaxel ± Veliparib in HER2-Negative Metastatic/Locally Adv *BRCA*-Associated BC (BROCADE-3)



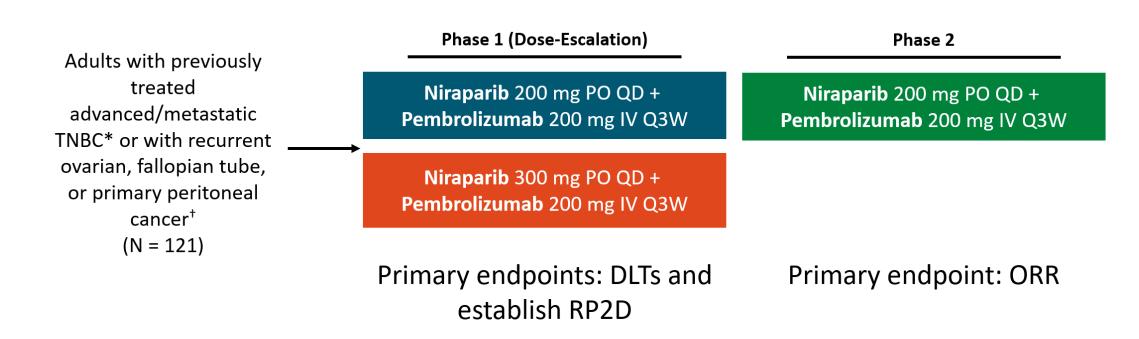
BROCADE-3: PFS (Primary Endpoint)

Months from Randomization

BROCADE-3: OS (Interim Analysis)

<u>Crossover:</u> 44% of ITT subjects randomized to placebo + C/P elected open-label veliparib as 1st subsequent therapy

Dieras V. Presented at ESMO 2019.


BROCADE-3: Adverse events

Any Grade	G3+		Veli	parib +	- C/P (I	N = 330	6)	F	Placebo	o + C/F	(N = 1	171)		Any Grade	G3+
89	81	Neutropenia				G	i3+	G3	+					91	84
81	40	Thrombocytopenia												71	28
80	42	Anemia												70	40
73	6	Nausea												64	4.1
54	0	Alopecia												51	0
50	7.1	Fatigue									I			50	4.1
46	4.5	Peripheral sensory neuropathy												52	4.7
45	4.8	Diarrhea												36	2.9
40	29	Leukopenia												38	28
36	3.9	Vomiting												36	1.8
36	1.2	Headache												35	1.8
34	0.3	Constipation												32	0.6
25	2.4	Asthenia												25	1.8
24	0.9	Decreased appetite												27	0
		100	80	60	40	20 Adve	 0 erse E	0 O	20 5 (%)	40	60	80	100		

Ongoing clinical trials evaluating PARPi in combination with Immune checkpoint inhibitors in HER2 negative BC.

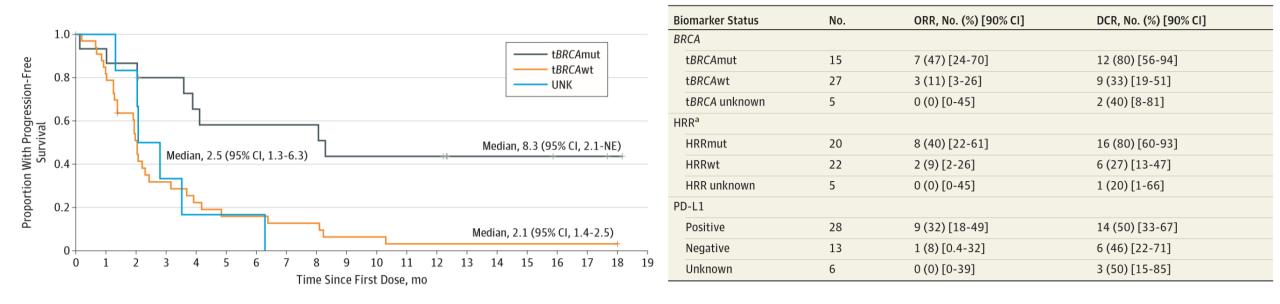
Clinicaltrials.gov identifier	Phase	Treatment	Tumor type	Outcome measures
NCT03167619	II	Olaparib + Durvalumab (anti-PD- L1)	Metastatic TNBC	PFS
NCT03544125	I	Olaparib + Durvalumab	Metastatic TNBC	Proportion of completion of clinical laboratory improvement amendments analytics, Safety, ORR, CBR, DOR
NCT02484404	I/II	Olaparib and/or Cediranib + Durvalumab (anti-PD- L1)	Advanced solid tumors and advanced or recurrent ovarian, TNBC, lung, prostate and colorectal cancers	Phase I: RP2D, safety Phase-II: ORR
NCT02734004	I/II	Olaparib + Durvalumab (anti-PD- L1)	Advanced or metastatic solid tumors (ovarian, breast, SCLC, gastric cancer)	DCR, safety and tolerability
NCT02657889	I/II	Niraparib + Pembrolizumab (anti- PD-1)	Advanced or metastatic TNBC or recurrent ovarian cancer	Phase I: RP2D, DLTs Phase-II: ORR
NCT02849496	II	Veliparib + Atezolizumab (anti-PD- L1)	TNBC (stage III/IV)	PFS

Niraparib + Pembrolizumab in Platinum-Resistant OC and Advanced TNBC (TOPACIO)

*Up to 4 prior lines of CT in phase 1 or ≤ 2 prior lines of CT in phase 2; previous platinum agent allowed if no progression on or within 8 wks of last treatment.

[†]Up to 5 prior lines of CT in phase 1 or \leq 4 prior lines of CT in phase 2.

TOPACIO: Best Overall Tumor Responses in Patients With Advanced TNBC


	Study Population			
Best Overall Response	Full Analysis (N = 55)	Efficacy Evaluable (n = 47)		
Complete response, No. (%)	5 (9)	5 (11)		
Partial response, No. (%)	5 (9)	5 (11)		
Stable disease, No. (%)	13 (24)	13 (28)		
Progressive disease, No. (%)	24 (44)	24 (51)		
Not performed or not evaluable, No. (%)	8 (15)	NA		
ORR, No. (%) [90% CI] ^a	10 (18) [10-29]	10 (21) [12-33]		
DCR, No. (%) [90% CI] ^b	23 (42) [31-54]	23 (49) [36-62]		

Abbreviations: DCR, disease control rate; NA, not applicable; ORR, objective response rate.

^a Includes complete and partial responses.

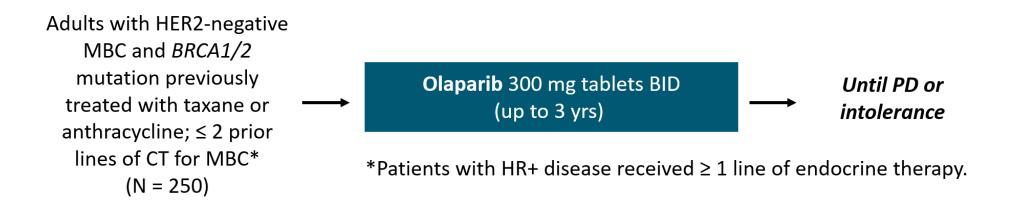
^b Includes complete and partial responses and stable disease.

TOPACIO: Response Rates in Biomarker-Defined, Efficacy-Evaluable Population

TOPACIO: Adverse Events

		No. (%) of Patients by Adverse Event		
Adverse Event	Any Grade (N = 55)	Grade ≥3 (N = 55)		
Any treatment-related	51 (93)	32 (58)		
Treatment-related occurring in >10% of patients				
Nausea	30 (55)	0		
Fatigue	24 (44)	4 (7)		
Anemia	19 (35)	10 (18)		
Thrombocytopenia	14 (25)	8 (15)		
Constipation	13 (24)	0		
Diarrhea	10 (18)	0		
Decreased appetite	9 (16)	0		
Vomiting	8 (15)	0		
Prespecified treatment-related and immune-related				
Any	8 (15)	2 (4)		
Adrenal insufficiency	1 (2)	1 (2)		
Hyperglycemia	1 (2)	0		
Hyperthyroidism	1 (2)	0		
Hypothyroidism	4 (7)	0		
Pneumonitis	1 (2)	0		
Polymyalgia rheumatica	1 (2)	1 (2)		

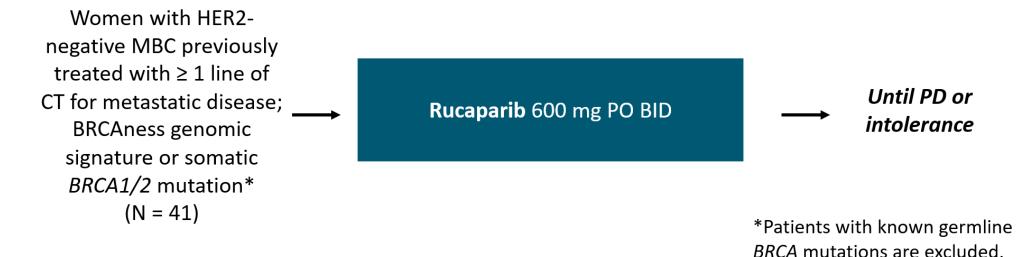
Combination Therapy: PARP Inhibition Plus Other Targeted Agents


Inhibitor Class	Trial	Pt Population	N (planned)	Treatment Arms	Primary Endpoint
VEGFR	Phase I/II (NCT01116648)	Previously treated TNBC or platinum- sensitive high- grade ovarian cancer	162	Olaparib + Cediranib vs Olaparib	DLT, MTD, PFS
РІЗК	Phase I (NCT01623349)	Previously treated TNBC or high-grade serous ovarian cancer	118	Olaparib + Buparlisib or Olaparib + Alpelisib	MTD, RP2D

Ongoing clinical trials evaluating PARPi in combination with targeted agents in HER2 negative BC

PARP inhibitor	Phase	Study population/ tumor type	Treatment	NCT
Olaparib	I/II	Recurrent ovarian, fallopian tube, peritoneal or TNBC patients with gBRCA mutation	Olaparib+ Cediranib Maleate	NCT01116648
Olaparib	II	Metastatic or unresectable solid tumors (TNBC, NSCLC, SCLC and pancreatic adenocarcinoma)	Olaparib+ Cediranib Maleate	NCT02498613
Fluzoparib	Ι	Recurrent ovarian or TNBC patients and subjects with deleterious BRCA mutation	Fluzoparib + Apatanib	NCT03075462
Olaparib	Ι	Recurrent TNBC or HGSOC	Olaparib + PI3K inhibitor (BKM 120 or BYL719)	NCT01623349
Olaparib	I/II	Recurrent endometrial, TNBC, and ovarian, primary peritoneal, or fallopian tube cancer	Olaparib + mTORC1/2 inhibitor (AZD2014) & AKT inhibitor (AZD5363)	NCT02208375
Olaparib	I	Metastatic, unresectable or recurrent solid tumors (ovarian, fallopian tube, or primary peritoneal and TNBC)	Olaparib + Onalespib (HSP90 inhibitor)	NCT02898207

Olaparib for HER2-Negative MBC With Deleterious Germline or Somatic *BRCA*1/2 Mutations (LUCY)


Open-label, phase IIIb multicenter study

- Primary endpoint: PFS (real-world setting)
- Key secondary endpoints: time to first subsequent treatment or death, time to second subsequent treatment or death, time to second progression or death, OS, time to study treatment discontinuation or death, clinical response rate, duration of clinical response

Rucaparib in MBC Patients With BRCAness Genomic Signature (RUBY)

Open-label, phase II multicenter study

- Primary endpoint: CBR (response or stable disease) lasting for ≥ 16 wks
- Secondary endpoints: response, PFS, OS, safety

Ongoing clinical trials evaluating PARPi in combination with chemo-and radio-therapy in HER2 negative BC

PARP inhibitor	Phase	Study population/ tumor type	Treatment	NCT
Olaparib	II/III	TNBC and/or gBRCA BC	Olaparib + paclitaxel + carboplatin	NCT03150576
Olaparib	I	TNBC and advanced ovarian cancer	Olaparib + paclitaxel + carboplatin	NCT00516724
Olaparib	Ι	Advanced HER2 negative BRCA1/2 mutated BC	Olaparib+carboplatin followed by Olaparib monotherapy vs Capecitabine	NCT02418624
Olaparib	Ι	Inflammatory, loco-regionally advanced or metastatic TNBC or patient with operated TNBC with residual disease	Olaparib+ radiation therapy	NCT03109080
Olparib	I	Locally Advanced Malignant Neoplasm, Inflammatory BC, TNBC	Olaparib+ radiation therapy	NCT02227082
Veliparib	III	Metastatic HER2 negative or locally advanced unresectable BRCA-associated BC	Veliparib+ carboplatin+ paclitaxel	NCT02163694
Veliparib	I	BC	Veliparib+radiation therapy	NCT01618357
Rucaparib	II	Patients with invasive TNBC or ER/PR+, HER2 negative with known BRCA1/2 mutations	Rucaparib+ cisplatin	NCT01074970

Conclusions

• PARP inhibitors Olaparib and Talazoparib are approved for metastatic germline *BRCA*-mutated, HER2-negative breast cancer.

- Olaparib and Talazoparib have meaningful clinical benefit with overall less toxicity and improved QOL compared to standard single agent chemotherapy

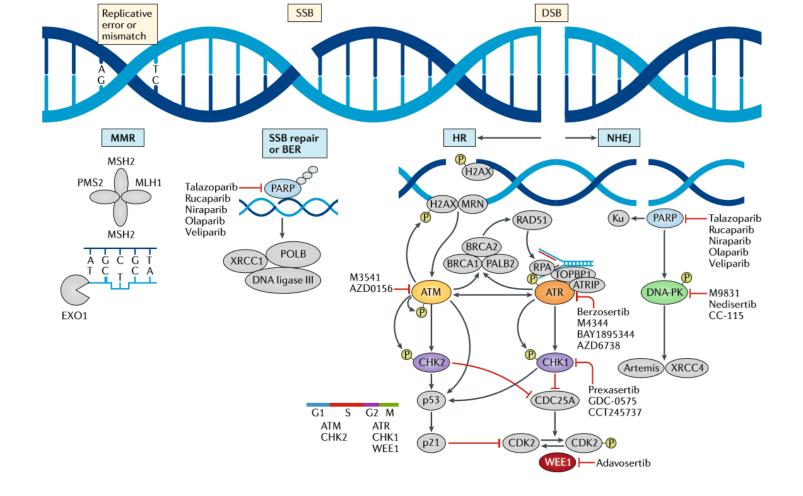
- Patients without prior exposure to chemotherapy in metastatic setting have the highest benefit.

 Clinical trials using PARP inhibitors in neoadjuvant and adjuvant setting, as well as combination with chemotherapy, targeted agents and immune checkpoint inhibitors are ongoing.

Thank you

Clinicaltrials.gov identifier	Phase	Treatment	Tumor type	Outcome measures	
NCT02000622	III	Olaparib vs chemotherapy (capacitabine, eribulin or vinorelbine)	HER2- BC	Median PFS: 7.0 vs 4.2 months Response rate: 59.9% vs 28.8%	
NCT00494234	II	Olaparib: 400mg bid vs 100 mg bid	Advanced BC with BRCA1 or BRCA2 mutations	ORR: 41% vs 22% Median PFS: 5.7 months vs 3.8 months	
NCT01078662	II	Olaparib	Ovarian, breast, pancreatic and prostate cancers	ORR: 31.1%, 13% 21.7% and 50.0%	
NCT01945775	01945775 III Talazoparib vs Chemotherapy		Advanced or HER2- BC with BRCA1 or 2 mutations	PFS: 8.6 months vs 5.6 months ORR: 62.6% vs 27.2% Median DoR: 5.4 Vs 3.2 months	
NCT01042379	II	Veliparib-carboplatin vs standard therapy alone	TNBC	Pathological complete response rate: 51% vs 26%	
NCT01149083	I/II	Veliparib vs veliparib with carboplatin	Metastatic BC with BRCA1/2 mutations	PFS: 8.7 vs 18.8 months	
NCT01506609	II	Veliparib to temozolomide or carboplatin/paclitaxel Vs carboplatin/paclitaxel with placebo	Metastatic BC with BRCA1/2 mutations	PFS: 14.1 vs 12.3 months OS: 28.3 Vs 25.9 months ORR: 77.8% vs 61.3%	
NCT02484404	I/II	Durvalumab plus olaparib or cediranib	Women's cancer	Disease control rate: 83% vs 75%	

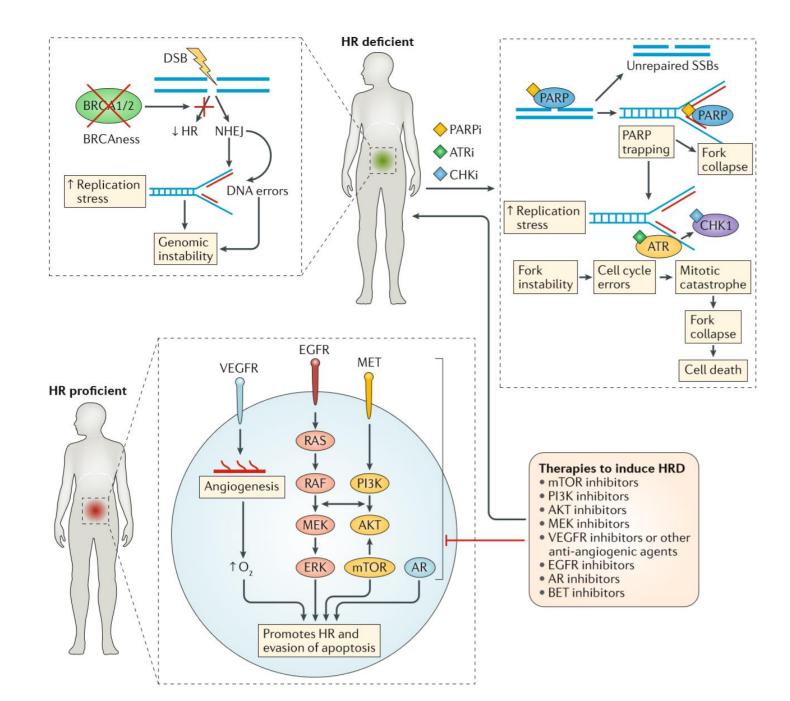
Summary of completed trials with PARPi, mono and combination therapy


BRE09–146 trial: Rucaparib

- N=135
- Randomized patients with TNBC with residual disease after NACT to Cisplatin or Cisplatin and Rucaparib.
- 2-year DFS was 67% for the combination and 60% for Cisplatin alone, not statistically significant

Early PARP Inhibitor Trials in Breast Cancer

Study	Treatment	Ν	BRCA1/2 Mutation Status	TNBC, %	Response
Fong ^[1]	Olaparib (phase I; multiple tumor types)	60	<i>BRCA1/2</i> : 37%	N/A	CBR: 63% (in 19 patients with <i>BRCA</i> -associated cancers)
ICEBERG 1 ^[2]	Olaparib 400 mg PO BID	27	BRCA1/2: 67%/33%	50	41%
Isakoff ^[3]	Veliparib + temozolomide	41	BRCA1/2: 7.3%/12.0%	56	<i>BRCA1/2</i> : 37.5% WT <i>BRCA</i>: 0%
Kaufman ^[4]	Olaparib 400 mg PO BID	62	BRCA1/2: 60%/40%	48	Tumor response: 12.9%
Gelmon ^[5]	Olaparib 400 MG	26	TNBC: 16	g <i>BRCA</i> : 50%	
	PO BID	26	g <i>BRCA</i> : 10	WT BRCA: 100%	WT <i>BRCA</i> : 0%

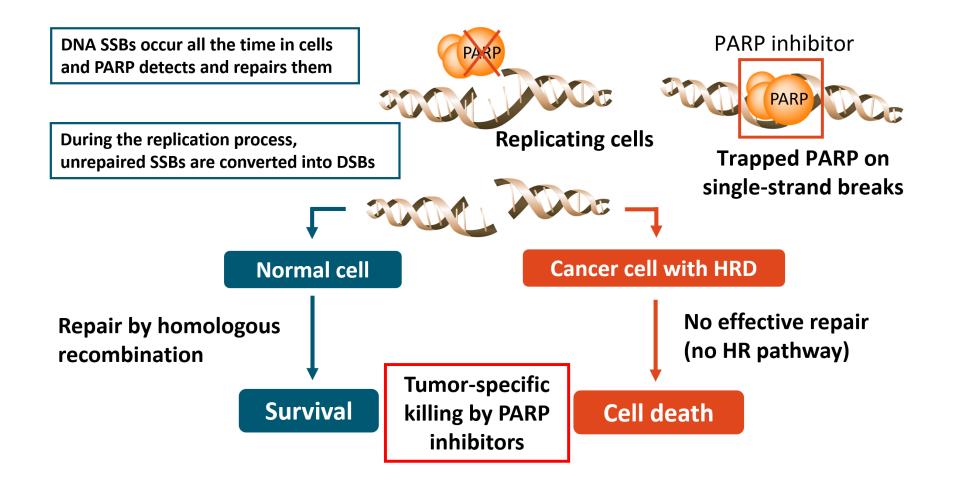

1. Fong. NEJM. 2009;361:123. 2. Tutt. Lancet. 2010;376:235. 3. Isakoff. ASCO 2010. Abstr 1019. 4. Kaufman. JCO. 2015;33:244. 5. Gelmon. Lancet Oncol. 2011;12:852.

DNA damage response pathways being targeted in the clinic. Specific types of DNA damage — mismatches due to replication, single- strand DNA breaks (SSBs) or double- strand DNA breaks (DSBs) — result in the activation of specific signalling and repair cascades. DNA damage response (DDR) pathways mitigate replication stress and repair DNA; thus, deficiencies in these pathways result in the accumulation of SSBs and DSBs and increased immunogenicity owing to the generation of neoantigens from mutant proteins. Poly(ADP- ribose) polymerase (PARP) enzymes are key to activating a host of downstream repair mechanisms and are primary proteins involved in SSB repair or base- excision repair (BER). The repair of DSBs occurs predominately through the rapid, error- prone non- homologous end joining (NHEJ) repair pathway in conjunction with the much slower higher-fidelity, error- free homologous recombination (HR) repair pathway. DNA replication is a necessary component of DNA repair and thus cell cycle regulation and replication fork stability, while also working together via their downstream targets, CHK1 and CHK2, respectively, to regulate cell cycle control checkpoints. The kinase activity of DNA- PK is essential for NHEJ and V(D) recombination. WEE1 is a distinct nuclear kinase that regulates mitotic entry and nucleotide pools in coordination with DDR. Drugs targeting these key components of the DDR pathways that are undergoing clinical testing are indicated. ATRIP, ATR- interacting protein; EXO1, exonuclease 1; H2AX, histone H2AX; MRN, MRE11, RAD50 and NBS1 complex; POLB, DNA polymerase- β; RPA , replication protein A ; TOPBP1, DNA topoisomerase 2-binding protein.

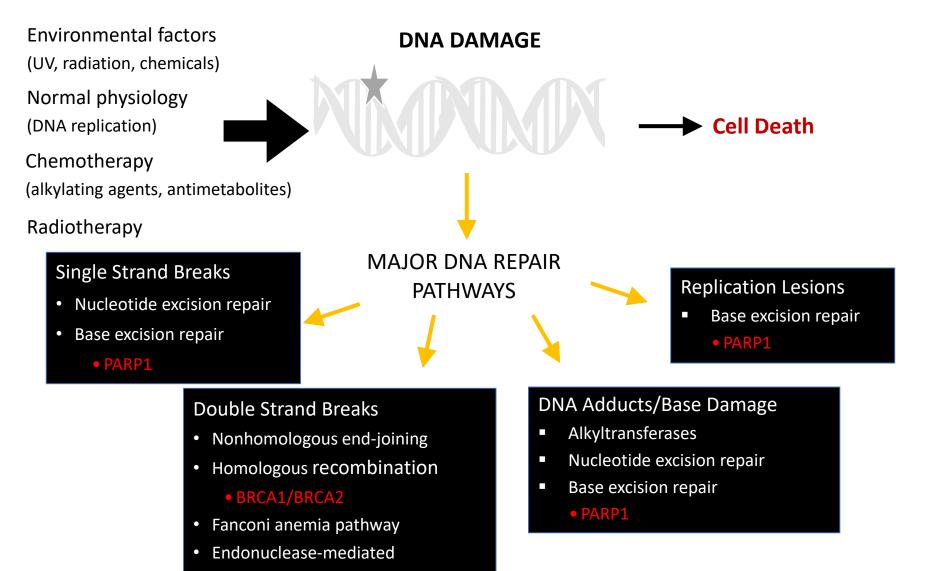
Theodosius Dobzhansky first describes the concept of 'synthetic lethality' ²²⁷	1946	
	1963	First description of PARP enzymatic activity by Paul Mandel and colleagues ²²⁸
Discovery of the poly(ADP-ribose) (PAR) by Pierre Chambon and colleagues ²²⁹	1966	
	1971	First purification of PARP1 (REF. ²³⁰)
Durkacz et al. first demonstrate that PARP inhibition disrupts DNA repair in vitro ²³¹	1980	
	1990	Identification of the genetic region containing BRCA1 by Mary-Claire King and colleagues ²³²
Cytotoxic effects of tight PARP binding to damaged DNA described by Masahiko Satoh and Tomas Lindahl; this phenomenon is later termed 'PARP trapping' ¹⁴	1992	(Sep) Identification of the genetic region containing
trapping	1994	BRCA2 by Wooster et al. ⁴⁰
Cloning of BRCA2 cloned by Wooster et al. ²³³	1995	└ (Oct) BRCA1 first cloned by Mark Skolnick's group ⁴¹
Cloning of BRCA2 cloned by wooster et al.	1995	
	2000	First publication on the PARP inhibitor AG014699 (rucaparib) by White et al. ²³⁴
Back-to-back publications in <i>Nature</i> by Ashworth and Helleday groups demonstrating synthetic lethality of PARP inhibitors in <i>BRCA1/2</i> -deficient tumours ^{10,235}	2005	(Oct) First publication on the development of KU-0059436 (also known as AZD2281 and olaparib) by Menear et al. ²³⁶
(Jul) First publication demonstrating the antitumour activity of olaparib in patients with BRCA1/2-mutant tumours by Fong et al. ⁹	2008	(Dec) First publication demonstrating the clinical safety and proof of principle of rucaparib treatment, in combination with temozolomide, by Plummer et al. ²³⁷
(Nov) First publication detailing the development of MK-4827 (niraparib) by Jones et al. ²³⁸	2011	Press release reporting the negative results of a phase III trial of iniparib (in combination with chemotherapy) in patients with triple-negative
(Jan and Mar) Research publications demonstrate that iniparib is not a bona fide PARP inhibitor ²⁴⁰	2012	breast cancer ²³⁹
(Oct) EMA grant marketing authorization for olaparib in the maintenance treatment of patients with platinum-sensitive, relapsed, <i>BRCA1/2</i> -mutated ovarian cancers who are in CR or PR after platinum-based chemotherapy	2013	Unanimous US Supreme Court decision in case of Association of Molecular Pathology versus Myriad Genetics, ruling against Myriad Genetics, that naturally occurring DNA (<i>BRCA1/2</i> genes) cannot be patented ²⁴¹
(Dec) FDA accelerated approval for olaparib use in the treatment of advanced-stage, $BRCA1/2$ -mutant ovarian cancers refractory to ≥ 3 prior lines of therapy	2016	FDA accelerated approval of rucaparib for the treatment of advanced-stage, <i>BRCA1/2</i> -mutant ovarian cancer refractory to ≥2 prior lines of therapy
(Jan) FDA approval of olaparib for the treatment of metastatic HER2-negative, <i>BRCA1/2</i> -mutant breast cancer previously treated with chemotherapy	2017	(Mar) FDA approval of maintenance niraparib for patients with advanced-stage ovarian cancer who are in CR or PR after platinum-based chemotherapy
(Apr) FDA approval of maintenance rucaparib for patients with advanced-stage, recurrent ovarian cancer who are in CR or PR after platinum-based chemotherapy	2018	(Aug) FDA approval of maintenance olaparib for patients with advanced-stage, recurrent ovarian cancer who are in CR or PR after platinum-based chemotherapy
(May) EMA approval of rucaparib in patients with advanced-stage, platinum-sensitive, relapsed or progressive, $BRCA1/2$ -mutant (germline and/or somatic) ovarian cancer who have received ≥ 2 prior lines of platinum-based chemotherapy and are unable to tolerate further platinum-based chemotherapy		(Nov) EMA approval of maintenance niraparib for patients with advanced-stage, relapsed ovarian cancer who are in CR or PR after platinum-based chemotherapy

Fig. 2 | **Timeline of key events leading to FDA approvals of PARP inhibitors in cancer medicine**. Landmark discoveries and advances in the development of poly(ADP-ribose) polymerase (PARP) inhibitors are indicated^{10,14,0,41,227-235}, together with the current approved indications for these agents in the USA and the EU. CR, complete remission; PR, partial remission.

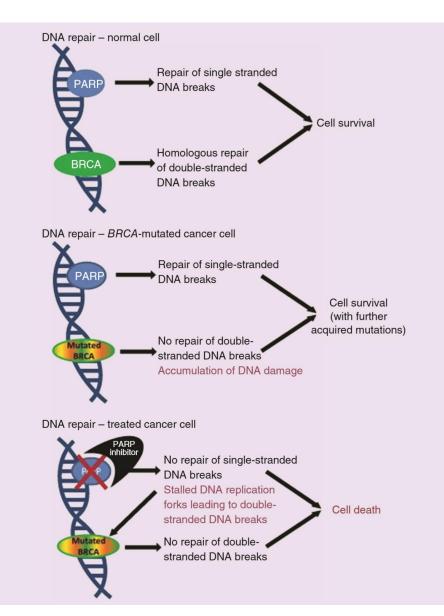
PARP Inhibitors: Most Common Grade 3/4 Toxicities

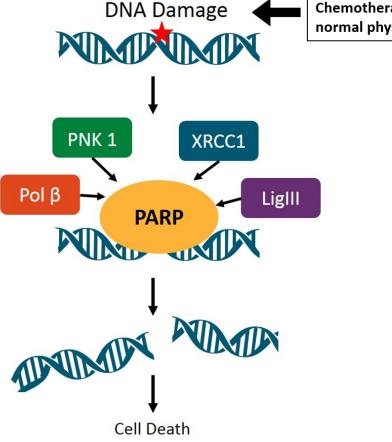

• Trial (Agent)	Setting	Thrombocytopenia, %	Anemia, %	Neutropenia, %	HTN, %	Fatigue, %	ALT/AST Increased, %
NOVA (Niraparib) ^[1]	Maintenance plt-sensitive, recurrent OC	33.8	25.3	19.6	8.2	8.2	NR
EMBRACA (Talazoparib) ^[2]	g <i>BRCA</i> mut MBC	14.7	39.2	20.9	NR	1.7	NR
SOLO-2 (Olaparib) ^[3]	Maintenance plt sensitive relapsed OC	1	19	5	NR	4	NR
OlympiAD (Olaparib) ^[4]	g <i>BRCA</i> mut MBC	2	16	9	NR	3	2

1. Mirza. NEJM. 2016;375:2154. 2. Litton. NEJM. 2018;379:753. 3. Pujade-Lauraine. Lancet Oncol. 2017;18:1274. 4. Le. Expert Rev Clin Pharmacol. 2018;11:833. Slide credit: <u>clinicaloptions.com</u>


Where are we going next?

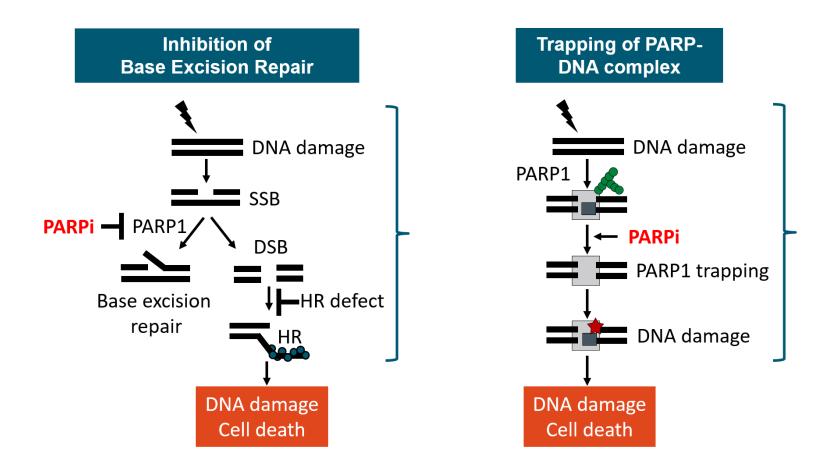
- With PARP inhibitors now approved, there's a lot of interest in expanding the reach of PARP inhibitors outside of patients with germline BRCA mutations and also improving the response in patients with BRCA mutations. The OLYMPIA adjuvant trial completed accrual this year, so we will be looking for that. There's really intriguing data in the neoadjuvant setting with singleagent talazoparib in patients with germline BRCA mutations, and a phase II trial is now going on with high pCR rates with talazoparib alone. OLYMPIA, of course, is looking at adjuvant olaparib in patients with germline BRCA mutations, which is a much larger trial. It is really exciting to see that complete accrual now.
- Combining PARP inhibitors with chemotherapy was presented at ESMO this year, showing improvement in PFS in the second progression after randomization with the addition of the fairly less potent PARP inhibitor veliparib to carboplatin and paclitaxel. I think the reason they could add it was because it doesn't cause as much bone marrow toxicity. There was a marked increase in the rate of grade 3 thrombocytopenia with the addition of veliparib, but otherwise, the toxicities were relatively similar. What happens in terms of long-term data will really determine how we use that combination, but what's intriguing to me is the concept of getting an induction with chemotherapy plus or minus a checkpoint inhibitor, then maybe using the PARP inhibitor combined with immunotherapy as maintenance. This is actually similar to what's being done in ovarian cancer, and there are very interesting data from the laboratory suggesting that the combination of PARP inhibitors and checkpoint inhibitors will enhance the efficacy of checkpoint inhibitors. PARP inhibitors increase the immune responsiveness of the tumor microenvironment by a variety of mechanisms, so there are actually a number of studies going on looking at those combinations as well with some early encouraging data.
- There's also a lot interest in PARP inhibitors, as I mentioned, looking at homologous recombination defect type testing to see whether or not that can help determine the benefit of combining a PARP with immunotherapy, but these are all approaches for the future.


PARP Inhibitor and Homologous Recombination

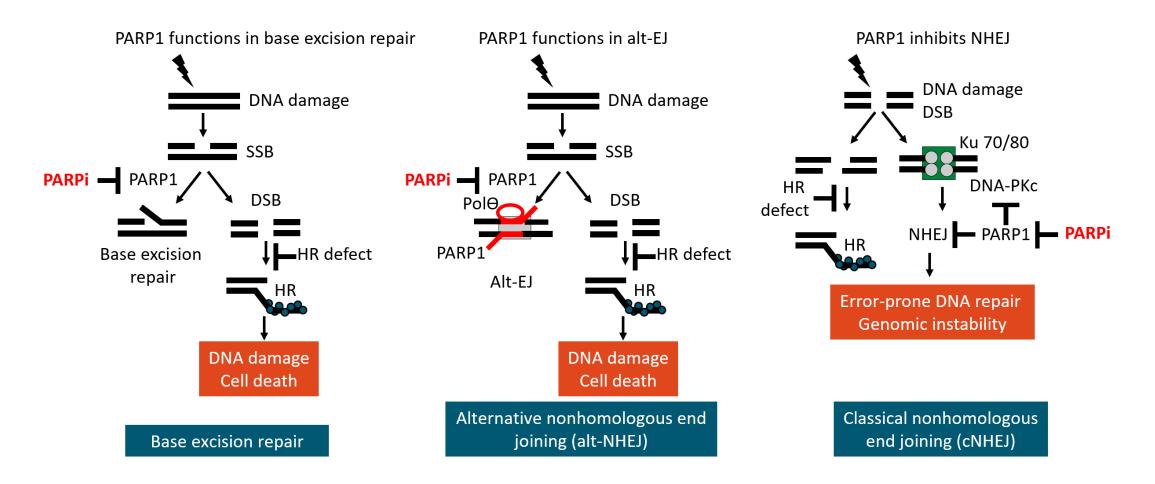

Mechanisms of DNA Repair

PARP inhibitors: Mechanisms of Action

Inhibition of PARP Catalytic Activity

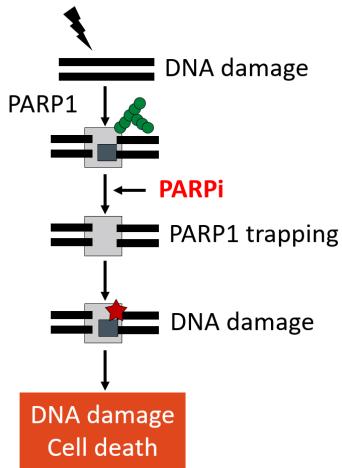


Chemotherapy (eg, alkylating agents), radiotherapy, environmental factors (UV, radiation, chemicals), normal physiology (DNA replication, ROS)


PARP

- Critical DNA repair enzyme (SSB, BER)
- Often overexpressed in cancer cells
- Confers resistance to chemotherapy and radiation
- PARP Inhibition
 - Prevents recruitment of DNA repair enzymes
 - Leads to failure of single strand break repair
- Unrepaired break site → replication fork arrest
 - Leads to degeneration into double-strand breaks
 - Ultimately leads to chromosomal catastrophe and cell death

How Do PARP Inhibitors Kill Tumor Cells With Homologous Recombination Deficiency?



Mechanisms of Synthetic Lethality Based on Catalytic Inhibition of PARP1

PARP-DNA Trapping by PARP Inhibitors

PARP1 trapping on DNA damage

- PARP inhibitor traps PARP1 on DNA
- Homologous recombination required to bypass lesion
 - In HR-deficient cell, trapped PARP causes DNA damage and cell death
 - Mechanism is reminiscent of conversion of topoisomerase I into a poison by topoisomerase I inhibitors