

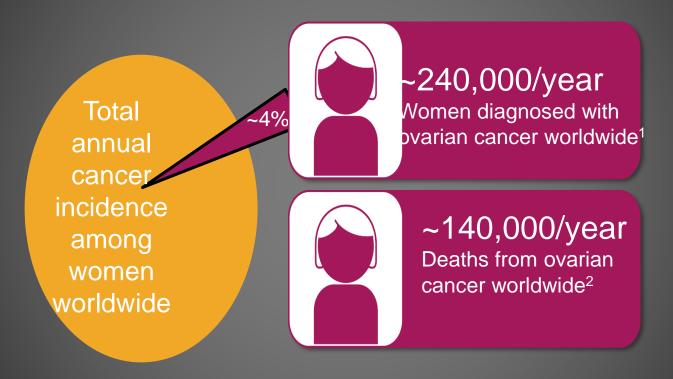
Epidemiology of BRCA Mutation & The Pre-existing Guidelines for BRCA

Aladdin Maarraoui, MD, FACP.

American Boards of Medical Oncology,
Hematology and Internal Medicine.

Clinical Professor, Gulf Medical University
Chief of Medical Oncology
Gulf International Cancer Center, Abu Dhabi.

Declaration


Presenter has no conflict of interest to declare.

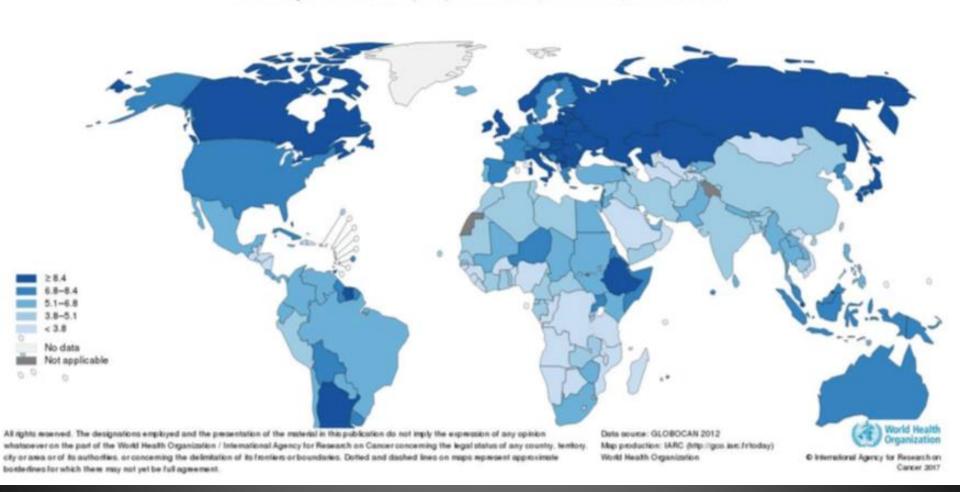
بسم الله الرحمن الرحيم Presentation objectives

- Epidemiology.
- How risky is BRCA?
- What is BRCA?
- How to test for?
- Results expected.
- Guidelines.

Ovarian cancer incidence and mortality rate

1. GLOBOCAN, 2012.
 http://globocan.iarc.fr/Pages/fact_sheets_p
 opulation.aspx; 2. Romero I, et al.
 Endocrinology 2012;153:1593–602.

A regional perspective on ovarian cancer


In the USA ovarian cancer accounts for about 3% of all female cancers and approximately 5% of cancer deaths among women¹

Outside the USA, Northern Europe has the highest incidence of ovarian cancer and mortality²

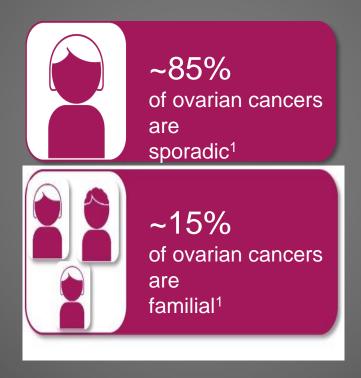
• 1. Jemal A, et al. CA Cancer J 2010;60:277–300; 2. Cramer DW. Hematol Oncol Clin North Am 2012;26:1–12.

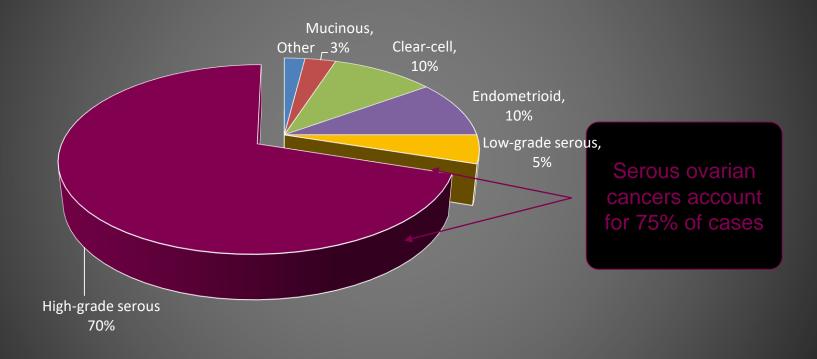
Estimated age-standardized rates (World) of incident cases, ovarian cancer, worldwide in 2012

Countries with Highest Rates of Ovarian Cancer

Ovarian cancer rates

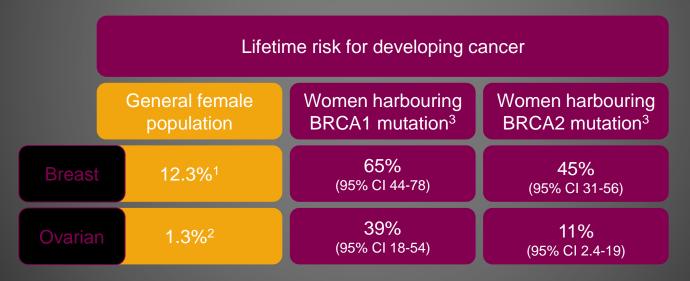
Serbia had the highest rate of ovarian cancer in 2018, followed by Brunei.


Rank	Country	Age-standardised rate per 100,000
1	Serbia	16.6
2	Brunei	16.0
3	Belarus	15.4
4	Poland	14.7
5	Latvia	14.3
6	Hungary	13.2
7	Ukraine	12.3
8=	Fiji	12.2
8=	Lithuania	12.2
10	Croatia	12.1
11	Slovakia	11.6
12	Ireland	11.4
13=	Moldova	11.1
13=	Russia	11.1


Sporadic and familial ovarian cancer

1. Romero I, *et al. Endocrinology* 2012;153:1593–602.

Frequency of ovarian cancer types



Increased cancer risk associated with BRCA mutations

Among the general female population, the lifetime risk for developing breast cancer is 12.3%¹, and for ovarian cancer 1.3%²

Lifetime risk for both cancers is substantially increased among women harbouring mutations in *BRCA1* or *BRCA2*³

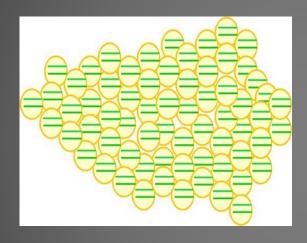
1. SEER Stat Fact Sheets: Breast cancer. http://seer.cancer.gov/statfacts/html/breast.html 2.
 SEER Stat Fact Sheets: Ovary Cancer. http://seer.cancer.gov/statfacts/html/ovary.html 3.
 Balmaña J, et al. Ann Oncol 2011;22(Suppl. 6):vi31—vi34

Germline and somatic BRCA mutations

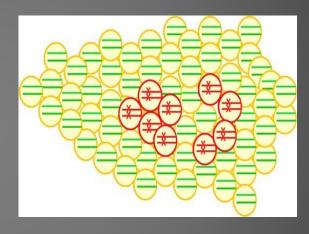
Germline mutations¹

Mutations described as germline are replicated in every cell of the body. This reflects their origin in the DNA within germinal cells (eggs or sperm) and the resulting transmission to progeny at conception. Inherited (germline) *BRCA* mutations account for the majority of familial ovarian cancer.²

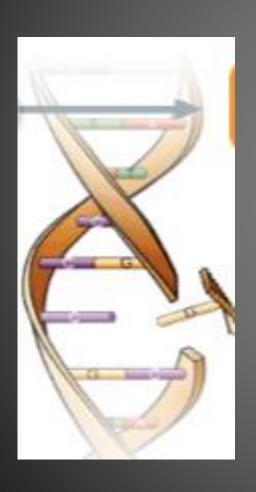
Somatic mutations³


Somatic mutations can arise in any cell other than a germinal cell.

BRCA mutations described as somatic are those that occur in the BRCA genes within tumour cells. Somatic mutations are non-heritable.



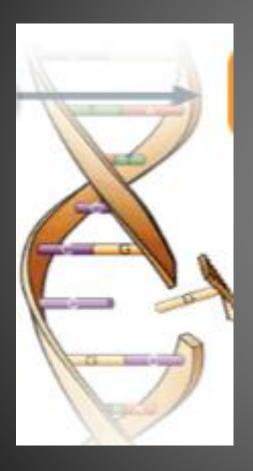
 Tumour specific somatic mutation in women without germline BRCA mutation



All body cells wild type

Mutation in tumor cells only

Normal BRCA in cell



BRCA-1 BRCA-2

Courtesy of Aladdin Maarraou

What is PARP: In a normal cell?

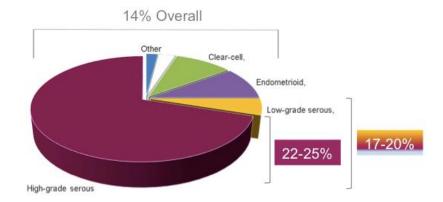
BRCA-1 BRCA-2

PARP

Courtesy of Aladdin Maarraou

In BRCA there is only 1 Repair Tool

PARP


In a BRCA cell, PARP Inhibitor will prevent DNA repair and leads to Apoptosis

The prevalence of germline *BRCA* mutations in women with ovarian cancer

- Germline BRCA mutations have been reported in 14% of women with non-mucinous ovarian cancer ¹
- The prevalence of BRCA mutations was higher among women with serous ovarian cancer (17–20% overall and ~22–25% in high-grade serous ovarian cancer) 1,2

In 2019, I tested more patients for BRCA than what I ever did

In 2019, I tested more patients for BRCA that what I ever did

 55 hereditary cancer panel cost dropped to 550 Euro =2,270 Dirham. Last year it was 1850 Euro=7,500 Dirham.

NCCN Guidelines Version 3.2019 Genetic/Familial High-Risk Assessment: Breast and Ovarian

NCCN Guidelines Index
Table of Contents
Discussion

however, a study has reported that over time, buccal epithelial cells are replaced by donor-derived cells in allogeneic HSCT recipients. 48,49 Therefore, genetic testing using buccal swab samples may be limited given this known risk of donor DNA contamination.

The genetic testing strategy is greatly facilitated when a pathogenic or likely pathogenic variant has already been identified in another family member. In that case, the genetic testing laboratory can limit the search for pathogenic or likely pathogenic variants in additional family members to the same location in the gene. In most cases, an individual testing negative for a known familial pathogenic or likely pathogenic variant predisposing to breast cancer can be followed with routine breast screening. Individuals who meet testing criteria but do not undergo gene testing should be followed as if a pathogenic or likely pathogenic variant (ie, BRCA1/2, PTEN, or TP53 pathogenic or likely pathogenic variant) is present, if they have a close family member who is a known carrier of the pathogenic or likely pathogenic variant.

For the majority of families in whom presence of a pathogenic or likely pathogenic variant is unknown, it is best to consider testing an affected family member first, especially a family member with early-onset disease, bilateral disease, or multiple primaries, because that individual has the highest likelihood for a positive test result. Unless the affected individual is a member of an ethnic group for which particular founder pathogenic or likely pathogenic variants are known, comprehensive genetic testing (ie, full sequencing of the genes and detection of large gene rearrangements) should be performed by commercial or academic laboratories that are clinically approved or validated.

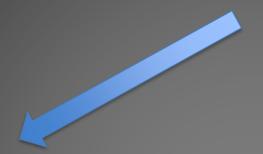
For individuals with family histories consistent with a pattern of hereditary breast and/or ovarian cancer on both the maternal and paternal sides, the possibility of a second pathogenic or likely pathogenic variant in the family

should be considered, and full sequencing may be indicated, even if a variant has already been identified in a relative.

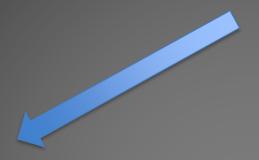
In the situation of an unaffected individual with a significant family history, the testing of the unaffected individual (or of unaffected family members) should only be considered when no affected family member is available for testing. In such cases, the unaffected individual or unaffected close relative with the highest likelihood of testing positive for the pathogenic or likely pathogenic variant should be tested. A negative test result in such cases, however, is considered indeterminate (see Table 2) and does not provide the same level of information as when there is a known pathogenic or likely pathogenic variant in the family. Thus, one should be mindful that when testing unaffected individuals (in the absence of having tested affected family members), significant limitations may exist in interpreting the test results, and testing multiple family members may be indicated.

In the case of BRCA-related breast/ovarian cancer, if no family member with breast or ovarian cancer is living, consideration can be given to testing first- or second-degree family members affected with cancers thought to be related to the pathogenic or likely pathogenic variant in question (eg, prostate or pancreatic cancer). Importantly, the significant limitations of interpreting testing results for an unaffected individual should be discussed prior to testing.

Reports regarding germline findings that may impact medical management should come from laboratories that are certified by the College of American Pathologists (CAP) and Clinical Laboratory Improvement Amendments (CLIA), with some U.S. states (eg, New York) having additional reporting requirements. Certain large genomic rearrangements are not detectable by a primary sequencing assay, thereby necessitating supplementary testing in some cases. 50-53 For example, there are tests that detect rare, large cancer-associated rearrangements of DNA in the


In 2019, I tested more patients for BRCA that what I ever did

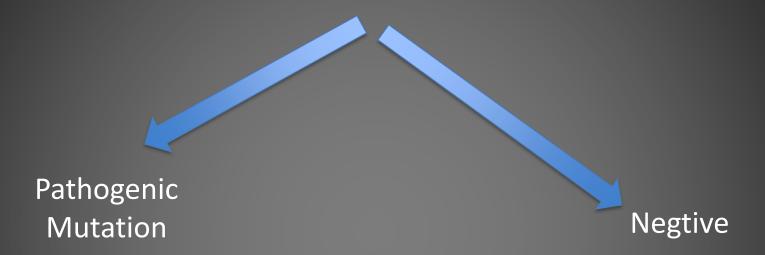
- 55 hereditary cancer panel cost dropped to 550 Euro =2,270 Dirham. Last year it was 1850 Euro=7,500 Dirham.
- Full gene sequencing with Large GENOMIC Rearrangements LGR dropped to 1,000 \$.


Colon	Breast	Pancreas	Ovarian	Gastric	Melanoma	Endometrial	Endocrine	Prostate
APC			_				APC	
71.6	ATM	ATM					Arc	ATM
	BARD1		BARD1					
BMPR1A								
	BRCA1	BRCA1	BRCA1					BRCA1
	BRCA2	BRCA2	BRCA2					BRCA2
	BRIP1		BRIP1					BRIP1
	CDH1		51111	CDH1				
					CDK4			
		CDKN2A			CDKN2A			
	CHEK2							CHECK2
EPCAM			EPCAM			EPCAM		EPCAM
	FANCA	FANCA	21 32 11 11	FANCA		FANCA		FANCA
	FANCM	FANCM						
								HOXB13
		MEN1					MEN1	
MLH1		MLH1	MLH1			MLH1		MLH1
	MRE11A							MRE11A
MSH2		MSH2	MSH2			MSH2		MSH2
MSH6		(MSH6)	MSH6			MSH6		MSH6
MUTYH	MUTYH		0.0000000000000000000000000000000000000					1117707
	NBN							NBN
	NF1							
	PALB2	PALB2						PALB2
PMS2						PMS2		PMS2
POLE								1,720,770
POLD1								
	PTEN				PTEN			
	RAD50							
	RAD51C		RAD51C					
	RAD51D		RAD51D					
							RET	
SMAD4								
	STK11	STK11						
	TP53		TP53		TP53			TP53
							VHL	

In 2019, I tested more patients for BRCA that what I ever did

- 55 hereditary cancer panel cost dropped to 550 Euro =2,270 Dirham. Last year it was 1850 Euro=7,500 Dirham.
- Full gene sequencing dropped to 1,000\$.
- Some pharmaceutical companies are offering free testing.

Pathogenic Mutation


Pathogenic Mutation

RESULT: POSITIVE

THE CLINICALLY SIGNIFICANT VARIANT WAS IDENTIFIED IN THE GENE

Note: "CLINICALLY SIGNIFICANT," as defined in this report, is a genetic change that is associated with the potential to after medical intervention.

ADDITIONAL FINDINGS: No Variant(s) of Uncertain Significance (VUS) identified

Comprehensive Cancer Breast and/or Ovarian Cancer Genetic Assessment

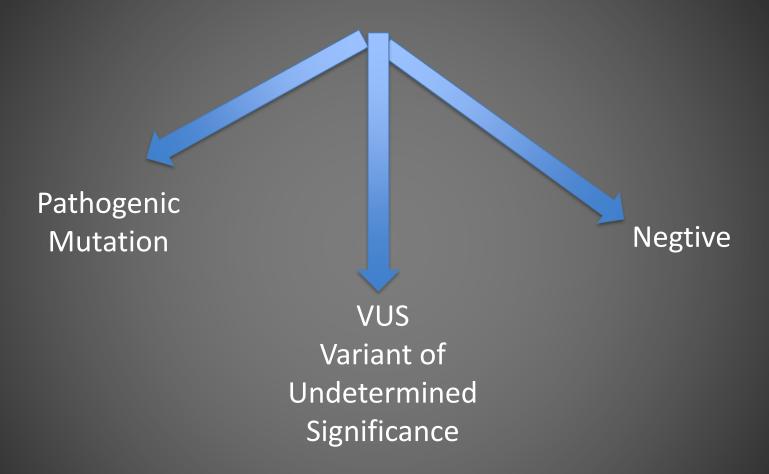
NCCN Guidelines Index
Table of Contents
Discussion

PRINCIPLES OF CANCER RISK ASSESSMENT AND COUNSELING

- Cancer risk assessment and genetic counseling is highly recommended when genetic testing is offered (ie, pre-test counseling) and after results are disclosed (ie, post-test counseling).¹⁻⁵ A genetic counselor, medical geneticist, oncologist, surgeon, oncology nurse, or other health professional with expertise and experience in cancer genetics should be involved early in the counseling of patients.
 - · Pre-test counseling includes:
 - Collection of a comprehensive family history
 - Note that when assessing family history, close blood relatives include first-, second-, and third-degree relatives on each side of the family (See BR/OV-B)
 - Evaluation of a patient's cancer risk
 - Generating a differential diagnosis and educating the patient on inheritance patterns, penetrance, variable expressivity, and the possibility of genetic heterogeneity
 - Preparing the patient for possible outcomes of testing including positive (pathogenic, likely pathogenic), negative, and uncertain findings and obtaining informed consent

- · Post-test counseling includes discussions of:
 - Results along with their significance and impact and recommended medical management options
 - Interpretation of results in context of personal and family history of cancer
 - Informing and testing at-risk family members
- Available resources such as disease-specific support groups and research studies

Genetic Testing Considerations


- Testing should be considered in appropriate high-risk individuals where it will impact the medical management of the tested individuals and/ or their at-risk family members. It should be performed in a setting in which it can be adequately interpreted.¹
- The probability of pathogenic/likely pathogenic variant detection associated with these criteria will vary based on family structure.
 Individuals with unknown or limited family history/structure, such as fewer than 2 female first- or second-degree relatives having lived beyond age 45 in either lineage, may have an underestimated probability of familial pathogenic/likely pathogenic variant detection. The estimated likelihood of pathogenic/likely pathogenic variant detection may be very low in families with a large number of unaffected female relatives.
- Patients who have received an allogeneic bone marrow transplant should not have molecular genetic testing via blood or buccal samples
 due to unreliable test results from contamination by donor DNA until other technologies are available. If available, DNA should be extracted
 from a fibroblast culture. If this source of DNA is not possible, buccal samples can be considered, subject to the risk of donor DNA
 contamination.
- Comprehensive genetic testing includes full sequencing and testing for large genomic rearrangements. It is encouraged that testing be done in commercial or academic labs that are clinically approved and validated. See BR/OV-A 3 of 3.
- In children <18 y, genetic testing is generally not recommended when results would not impact medical management.⁶
- Likely pathogenic variants are often treated similarly to pathogenic variants.

Continued

BR/OV-A 1 OF 3

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Novel versus VUS?

c.1608 deletion in BRCA-1

 In exon 10 of the BRCA1 gene. This variant was not previously described by the Exome Sequencing Project and has not been yet reported in the UMD database.

BRCA ShareTM (formerly UMD-BRCA1 mutations database) Home

Last update 21/04/15

BRCA Share was launched on April 21st 2015

 BRCA Share is a novel gene data share initiative that provides scientists and commercial laboratory organizations around the world with open access to BRCA1 and BRCA2 genetic data. The program's goal is to accelerate research on BRCA gene mutations, particularly variants of uncertain significance, to improve the ability of clinical laboratory diagnostics to predict which individuals are at risk of developing these cancers.

	GGC Gly 511	481		Glu	Glu	Ser	Arg 331	301	AAG	271 27	GTG GA	Pro Se	GGA AC	Glu Le 181 18	Ser Le	Glu Ve	TGT GC Cys Ai 91 9:	TGT CC Cys Pr 61 6:	ATC AA ile Ly 31 3:	
	CTT CA Lev H	## ## 482 48		Tyr Se	Leu Le	Glu As	Arg 17 332 33	302 30	GCT GA	2 273	G CCA	r Asn	r Arg	2 183	2 Ser 2 153	l Ser		T TTA o Lou ! 63	G GAA s Gh : 33	o Leu 3
	AT CCT	le <i>Gly</i> 83 484		er Gly	eu Gly	sn Pro	hr Pro 53 334	03 304	NA TTO	274	TGT Cys	Asn	GAT Asp	Ser 184	Val	lle	Gln	Cys	CCT Pro 34	
	F GAG	4 485		Ser	Ser	Arg	Ser 4 335	4 305	с тет	275	GGC /	Asp	Glu	GAT 1 Asp 185	Gln	He	Leu	Lys	GTC 1 Val 35	Ala
	GAT Asp 516	Phe 486		Ser	Asp	Asp	7hr 336	306	AAT .	276 2	ACA A	Leu A	lle S	Ser S 186 11	Leu S	6ln S	Asp Ti	Asn A	FCC AC Ser 7. 36 3	
AAT AT	TTT AT Phe 1/A 517 51			GAG AA Gh: Ly 427 42	GAC TC Asp S4 397 39	ACT GA 7hr GI 367 36	GN Ly 337 33	307 30	AAA AG	77 278	AT ACT	sn Thr	er Leu	CT GAA er <i>Glu</i> 87 188	er Asn	er Met	hr Gly	AT ATA sp lle i7 68	DA AAG hr Lys 17 38	
	C AA0	v GN 18 489		s He	er His	lu Asp	rs Lys 18 339	18 309	SC AA	279	CAT	The	Asp	6AT Asp 189	Leu	Gly	Leu	The	Cys 39	Glu
	Lys 520	Pro 490	A ATA	430	Asp 400	Val 370	740 340	310	A CAG	280	GCC Ala	Glu	Ser	ACC Thr 190	Gly	Tyr	Glu	Lys	GAC Asp 40	Glu
ccc	<i>Pro</i> 1771		Val	GTC	Lys		Asp L	311 3	сст б	281 28	AGC TO Ser Se	Lys A	Ala Li	GTT AA Val A: 191 19	Thr V	Arg A	Tyr A	Arg Si	CAC AT His II 41 4	Val G
10	Phe 177		Ast	44	Trp	Tec	eu Asn	12 313	GC TTA	82 288	A TTA	T GCA	s Lys 22 223	AT AAG m Lys 02 193	al Arg	m Ang	la Asn	or Leu 2 73	e Phe 2 43	In Asn
	2 17		, G	r Ge	, V	e e	Ala i	314 3	GCA /	284 1	CAG C	Ala	Ala 224 :	6CA A	The i	Ala	Ser	Gln	Cys i	Val
CT .	hr 773 1		ly	GA A	lal -	T.A	Asp Pro	315 316	AGG AGG	285 28	CAT GA His GR	GAG AG	Ala Cy. 225 22	ACT TA Thr Ty: 195 19	Leu An	Lys An	Tyr Asi	Glu Sei	Lys Ph 45 46 Exon	tte Asi
CTC	<i>Asn</i> 1774		Arg	AG A	Val	GTT	Leu	317	C CAA	6 287	G AAC	g His	s Glu	T TGC r Cys 6 197	g Thr	g Leu	n Phe	r Thr	e Cys	n Ala
C 4 C	Met 1775		Asn	AAC	Ser	¥GC	Cys GI	318 31	CAT AA	288 2	AGC A	Pro 6	TTT T	Ser (Lys 6	Leu C	Ala L	AGA T Arg F 78	Met L 48	
	Pr 5 17		Hi	C A	Ty	т.	2 Arg	9 320	C AGA	89 290	GT TTA	lu Lys	er Glu	lal Gly 99 200	in Arg	in Ser	ys Lys	he Ser	FG AAA eu Lys 19 50	in Lys
	76 1		5	c c	r = i	т т	Lys 6	321 3	TGG G	291	TTA Leu	Tyr	Thr	GAT Asp 201	He	Glu	Glu	Gln	Leu 51	He
	Thr 777		Gln	: ^ ^	Phe	TC	Slu Trp	22 323	CT GGA	292 2	CTC A	6ln 6	Asp V	CAA GA Gln G 202 21	Gln P	Pro G	Asn A	Leu V	CTC AI	
	1778		Gly		Trp	TGG	Asn	324	AGT	93 294	CT AAA	ly Ser	al The	A TTG lu Leu 33 204	ro Gin	lu Asn	sn Ser	al Glu	AC CAG sn Gln 3 54	lu Cys
con #.	17		Pr	on # CC	V.	ет	Lys G	325 32	AAG GA	295	GAC Asp	Ser	Asn	TTA Leu 205	Lys	Pro	Pro	Glu	Lys 55	Pro
	79 1		0		al	· a	in Lys	26 327	A ACA	296 2	AGA A	Val S	Thr 6	CAA A Gln 1 206 2	Thr S	Ser L	Glu I	Leu L	AAA G Lys 6 56 5	tte c
	Leu 1780		Lys	A A G	Thr	≜ CC	Leu	328	тет	97 29	TG AA	Ser As	Slu Hi	TC AC	Ser V	eu G	His Le	TG AA .eu Ly 87 8	66 CC 3ly Pr 57 Si	ys Le
	<i>Glu</i> 178	GAA	Arg 175	CG/	6ln 172	CAG	CCA TG Pro Cy 359 36	Asn As 329 33	AAT GA	98 299	AT GTA	AC TTG	AT CAT	CC CCT br Pro 18 209	TC TAC al Tyr 78 179	AG GAA In GIV 18 149	A AAA Nu Lys 18 119	A ATC is lie 8 89	T TCA Ser 8 59	16 GAG NV GAV 8 29
	7 1 17		, A	۱ G	s		0	10	a T	300	GAA Ghr	His	Gln	CAA Gln 210	lle	The	Asp	ATT ile 90	CAG Gln 60	Leu
C.1	782		A/a	CA	ier -	Exon														
CAT	Met 1783		Arg	AGA	lle					901	Pho	CCG Pro 871	Arg	Pro	Glu	Met	FTT Phe 721			
ccc	<i>Val</i> 1784		Glu	GAA	Lys					902	Glu	Phe	GN	Lvs	Ser	Leu	GTC Val 722	His	His	Ser
	6 4 17		Se	. TC	6	. 64				903 90	Cys G	Ser As	Thr Se	GIV Le	He Se	Ser G	AAT CC Asn Pr 723 72	Asp Se	Ser Ar	Pro Pr
	<i>ln</i> 85 1		er	c c	lu .					4 905	A CAA	AT CCA 70 Pro 74 875	GC ATA er ile 14 845	A ATT	6 TTA r Leu 14 785	6A GAA y <i>Glu</i> 14 755	T AGC 5 Ser 14 725	GC GAT W Asp 14 695	A AAC 9 Asn 4 665	T AAT
	Leu 786		Gln	AG	Arg	LG A				906	Lys	Gly	Glu	His	Leu	Arq	CTT Lev 726	Thr	Leu	Cys
C.14	Cys 178		Asp	GAC	Lys					907 90	Glu GI	Asn Al	Met G	GIV CV	Glu V	Val Lo	CCA AG Pro Ar 727 72	Phe Pr	Gln Le	Thr G
	. <i>6</i> 7 17		A	: A	M					8 909	u Asn	ia Glu	u Glu	s Ser	l Ser	u Gln	A GAA 9 GN 8 729	o GN	u Met	u Leu
10	788		irg	G A	let	TG				910	Gln	Glu	Ser	Lvs	The	The	GAA Glu 730	Leu	Glu	Gln
		GCT	Lys	A A G	Leu	CTE				911 9	Gly L	Glu C	GN L	Aso A	Leu G	Glu A	AAA G: Lys G 731 7	Lvs L	Gly L	lle A
cc	Se: 179		11e 176	AT	Asi	4.4				12 913	ys Asn	rs Ala	ev Asp	sn Ara	ly Lys	rg Ser	A GAG N GN 52 733	u Thr	ys Glu	sp Ser
			F	СТ	, 6	re				914	Glu	Thr	Ala	Asn	Ala	Val	Lys 734	Asn	Pro	Cys
			he 161		llu	A G				915 916	Ser Asi	Phe Ser	Gln Tyr	Aso The	Lys The	Glu Sei	TA GA. Leu GA 735 736	Ala Pro	Ala The	Ser Sei
		GTG	Arg	Exon AGG	His	· A T				917	lle	Ala	Leu	Glu	Glu	Ser	ACA 75r 737	Gly	Gly	Ser
cc	Ly: 179	**	Gly		Asy	G.A				918	Lys	His .	Gln .	GIV	Pro	Ser	6TT / Val 738	Ser	Ala	Glu
		G G	1 1	G C	0 1	T T				919 92	Pro Vi	Ser GI	Asn 71	Phe Ly	Asn Ly	lle Se	AA GT Lys V 739 74	Phe 71	Lys Ly	Glu II
		AG	Leu	:TA	Phe	TT				20 921	al Gln	y Ser	or Phe	s Tyr	s Cys	er Leu	G TCT al Ser 10 741	w Lys	s Ser	e Lys
ccc		стт	Glu	GAA	Glu	GA 4				922	Thr	Leu	Lys	Pro	Val	Val	AAT <i>Asn</i> 742	Cvs	Asn	Lys
	Se 5 17	тс	- 0	A1	V.	e T				923 92	Val As	Lys Ly		Leu GI	Ser G	Pro GI	AAT GC Asn A 743 74	Ser As	Lys Pr	Lys Ly
			e	rc	al .	r				925	n lle	s Gin	r Lys	v His	n Cys	y The	T GAA	n Thr	o Asn	s Tyr
ATC		TCA	Cys	TGT	Arg	494				926	The	Ser	Arg	Glu	Ala	Asp	ASP 746	Ser	Glu	Asn
TO		TTO	Cys	TGO	Gly	GG -				927 9	Ala G	Pro L	Gh S	Val. A	Ala P	Tyr G	Pro L	GN L	Gln T	Gln M
		. A	7	: т	A	L C				28 929	ly Phe	is Val	er Phe	on His	he Glu	y Thr	A GAT (S Asp 18 749	w Lys	er Ser	et Pro
		cc (yr	AT 1	sp	AT .				930	Pro	The	Ala	Ser	Asn	Gin	CTC Leu 750	GN	Lys	Val
00.4	<i>Leu</i> 1800	CTT	Gly	666	Val	оте														

OR 400 OV 600 VAI MOT AND IN TW AND GOC ACA GGT GTC CAC CCA ATT GTG GTT GTG CAG CCA GAT GCC TGG ACA GAG GAC AAT GGC TTC CAT GCA ATT GGG CAG ATG TGT GAG GCA

And a tra circ can sen and circ con sen CAC ANT TCA AAA GCA CCT AAA AAG GAAT AGG CCT GTG GTG ACC CGA GAG TGG GTG TTG GAC AGT GTA GCA CTC TAC CAG TGC CAG GAG CTG GAC ACC TAC CTG ATA CCC CAG ATC CCC CAC

ON THE ABOVE SET OF THE S

🚃 Gly Thr Gly Val His Pro lle Val Val Val Gln Pro Asp Ala Trp Thr Glu Asp Asn Gly Phe His Ala lle Gly Gln Met Cys Glu Ala

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860

AGC CAC TAC TGA Ser His Tyr Stop 1861 1862 1863 1864

TCT	GAT	GAC	CCT	GAA	TCT	GAT	CCT	TCT/	GAA	GAC	AGA
Ser	Asp	Asp	Pro	Glu	Ser	Asp	Pro	Seft	Glu	Asp	Arg
1572	1573	1574	1575	1576	1577	1578	1579	1/580	1581	1582	1583
							/				
GTT	CCC	CAA	TTG	***	GTT	GC A	G/AA	TCT	GCC	CAG	AGT
Val	Pro	Gln	Leu	Lys	Val	Ala k	← Glu	Ser	Ala	Gln	Ser
1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613
GTG	AGC	AGG	GAG	AAG	CCA	GAA	TTG	AC A	GCT	TC A	AC A
Val	Ser	Arg	Glu	Lys	Pro	Glu	Leu	Thr	Ala	Ser	Thr
1632	1633	1634	1635	1636	1637	1638	1639	1640	1641	1642	1643
TTT	ATG	CTC	GTG	TAC	AAG	TTT	GCC	AGA	***	CAC	
Phe	Met	Leu	Val	Tyr	Lys	Phe	Ala	Arg	Lys	His	His
1662	1663	1664	1665	1666	1667	1668	1669	1670	1671	1672	1673
	_	# 4 7								_	_

GTT GCA GAA *Val Ala Glu* 1607 1608 1609

GTT GAA *Val Glu*1607 1609

Patient DNA

GTT GCA GAA Val Ala Glu 1607 1608 1609

GTT GAA Val Glu 1607 1609

NCCN Guidelines 2019

NCCN Guidelines Version 3.2019 Breast and/or Ovarian Cancer Genetic Assessment

NCCN Guidelines Index Table of Contents Discussion

CRITERIA FOR FURTHER GENETIC RISK EVALUATION^a

- An individual at any age with a known pathogenic/ likely pathogenic variant in a cancer susceptibility gene within the family, including such variants found on research testingb
- An individual at any age with a known pathogenic/ likely pathogenic variant in a cancer susceptibility gene found on tumor testing (See BR/OV-A'3 of 3)
- An individual diagnosed at any age with any of the following:
 Ovarian cancer^c

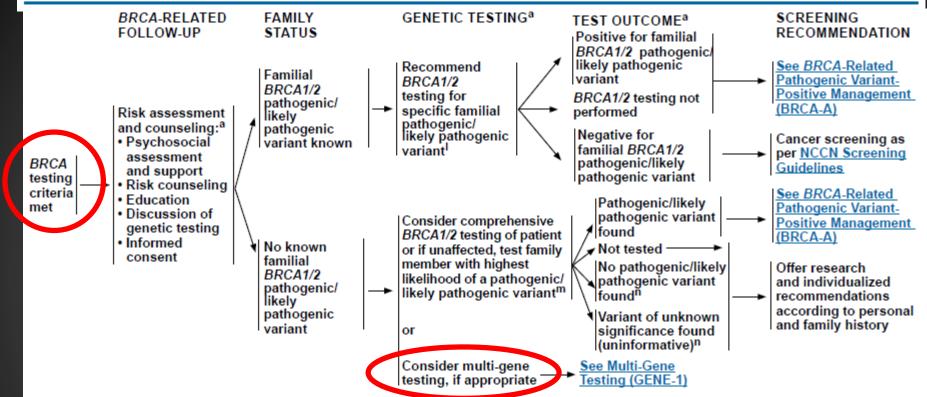
 - Pancreatic cancer
 - Metastatic prostate cancer^d
 - Breast cancer or high-grade (Gleason score ≥7) prostate cancer and of Ashkenazi Jewish ancestry
- An individual with a breast cancer diagnosis meeting any of the following:
- Breast cancer diagnosed age ≤50 y
- Triple-negative (ER-, PR-, HER2-) breast cancer diagnosed age ≤60 y
- Two breast cancer primaries⁶
- Breast cancer at any age, and
 - ׳1 close blood relative with:
 - breast cancer age ≤50 y; or
 - invasive ovarian cancer^c; or
 - male breast cancer; or
 - pancreatic cancer; or
 - high-grade (Gleason score ≥7) or metastatic prostate cancerd
 - ◊ ≥2 close blood relatives with breast cancer at any age

- An individual who does not meet the above criteria but has a first- or second-degree relative with any of the following:g
- Breast cancer ≤45 y
 Ovarianb cancer
- Male breast cancer
- Pancreatic cancer
- Metastatic prostate cancer^d
- ≥2 breast cancer primaries in a single individual
- >≥2 individuals with breast cancer primaries on the same side of family with at least one diagnosed ≤50 y
- An individual with a personal and/or family history on the same side of the family of three or more of the following (especially if diagnosed age ≤50 y; can include multiple primary cancers in same individual):9
 - breast cancer, sarcoma, adrenocortical carcinoma, brain tumor, leukemia (see LIFR-1),
 - colon cancer, endometrial cancer, thyroid cancer, kidney cancer, dermatologic manifestations.h macrocephaly, or hamartomatous polyps of gastrointestinal (GI) tract (see COWD-1),
- lobular breast cancer, diffuse gastric cancer (see CDH1 guidelines, GENE-2),
- breast cancer, gastrointestinal cancer or hamartomatous polyps, ovarian sex chord tumors, pancreatic cancer, testicular sertoli cell tumors, or childhood skin pigmentation (see STK11 guidelines, GENE-4)

NCCN Guidelines Version 3.2019 Breast and/or Ovarian Cancer Genetic Assessment

NCCN Guidelines Index Table of Contents Discussion

CRITERIA FOR FURTHER GENETIC RISK EVALUATION^a


- An individual at any age with a known pathogenic/ likely pathogenic variant in a cancer susceptibility gene within the family, including such variants found on research testingb
- An individual at any age with a known pathogenic/ likely pathogenic variant in a cancer susceptibility gene found on tumor testing (See BR/OV-A'3 of 3)
- An individual diagnosed at any age with any of the following:
 - Ovarian cancer^c
 - Pancreatic cancer
 - Metastatic prostate cancer^d
- Breast cancer or high-grade (Gleason score ≥7) prostate cancer and of Ashkenazi Jewish ancestry
- An individual with a breast cancer diagnosis meeting any of the following:
 - Breast cancer diagnosed age ≤50 y
 - Triple-negative (ER-, PR-, HER2-) breast cancer diagnosed age ≤60 y
 - Two breast cancer primaries^e
 - Breast cancer at any age, and
 - ׳1 close blood relative with:
 - breast cancer age ≤50 y; or
 - invasive ovarian cancer^c; or
 - male breast cancer; or
 - pancreatic cancer; or
 - high-grade (Gleason score ≥7) or metastatic prostate cancerd
 - ◊ ≥2 close blood relatives with breast cancer at any age

- An individual who does not meet the above criteria but has a first- or second-degree relative with any of the following:g
- Breast cancer ≤45 y
 Ovarianb cancer
- Male breast cancer
- Pancreatic cancer
- Metastatic prostate cancer^d
- ≥2 breast cancer primaries in a single individual
- >≥2 individuals with breast cancer primaries on the same side of family with at least one diagnosed ≤50 y
- An individual with a personal and/or family history on the same side of the family of three or more of the following (especially if diagnosed age ≤50 y; can include multiple primary cancers in same individual):9
 - breast cancer, sarcoma, adrenocortical carcinoma, brain tumor, leukemia (see LIFR-1),
- colon cancer, endometrial cancer, thyroid cancer, kidney cancer, dermatologic manifestations, h macrocephaly, or hamartomatous polyps of gastrointestinal (GI) tract (see COWD-1),
- lobular breast cancer, diffuse gastric cancer (see CDH1 guidelines, GENE-2),
- breast cancer, gastrointestinal cancer or hamartomatous polyps, ovarian sex chord tumors, pancreatic cancer, testicular sertoli cell tumors, or childhood skin pigmentation (see STK11 guidelines, GENE-4)

NCCN Guidelines Version 3.2019 BRCA-Related Breast and/or Ovarian Cancer Syndrome

NCCN Guidelines Index
Table of Contents
Discussion

^aFor further details regarding the nuances of genetic counseling and testing, see BR/OV-A.

If of Ashkenazi Jewish descent, in addition to the specific familial pathogenic/likely pathogenic variant, test for all three founder pathogenic/likely pathogenic variants.

Additional testing may be indicated if there is also a significant family history of cancer on the side of the family without the known pathogenic/likely pathogenic variant.

mFor both affected and unaffected individuals of Ashkenazi Jewish descent with no known familial pathogenic/likely pathogenic variant, first test for the three common pathogenic variants. Then, if negative for the three pathogenic/likely pathogenic variants and ancestry also includes non-Ashkenazi Jewish relatives or other BRCA-related criteria are met, consider comprehensive genetic testing. For both affected and unaffected individuals who are non-Ashkenazi Jewish and who have no known familial pathogenic/likely pathogenic variants, comprehensive genetic testing is the approach, if done.

nlf no pathogenic/likely pathogenic variant is found, consider testing another family member with next highest likelihood of having a pathogenic/likely pathogenic variant and/or other hereditary breast/ovarian cancer syndromes such as Li-Fraumeni (LIFR-1) and/or Cowden syndrome (COWD-1) or multi-gene testing (GENE-1). For additional information on other genetic pathogenic/likely pathogenic variants associated with breast/ovarian cancer risk for which genetic testing is clinically available, see GENE-2.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

BRCA1/BRCA2 and Other Genes are recommended

NCCN Guidelines Version 2.2019 Genetic/Familial High-Risk Assessment: Breast and Ovarian

NCCN Guidelines Index
Table of Contents
Discussion

BREAST AND OVARIAN MANAGEMENT BASED ON GENETIC TEST RESULTS a-e

The inclusion of a gene in this table below does not imply the endorsement either for or against multi-gene testing for moderate-penetrance genes.

Gene	Breast Cancer Risk and Management	Ovarian Cancer Risk and Management	Other Cancer Risks and Management
ATM	Increased risk of breast cancer • Screening: Annual mammogram with consideration of tomosynthesis and consider breast MRI with contrast starting at age 40 yf.g • RRM: Evidence insufficient, manage based on family history	Potential increase in ovarian cancer risk, with insufficient evidence for recommendation of RRSO	Unknown or insufficient evidence for pancreas or prostate cancer
	Comments: Insufficient evidence to recommend ag	inst radiation therapy. Counsel for risk of autosoma	recessive condition in offspring.
BARD1	Potential increase in breast cancer risk, with insufficient evidence for management recommendations	Unknown or insufficient evidence for ovarian cancer risk	N/A
BRCA1	Increased risk of breast cancer • See BRCA Pathogenic Variant-Positive Management	Increased risk of ovarian cancer • See BRCA Pathogenic Variant-Positive <u>Management</u>	Prostate cancer • <u>See BRCA Pathogenic Variant-Positive Management</u>
BRCA2	Increased risk of breast cancer • See BRCA Pathogenic Variant-Positive Management	Increased risk of ovarian cancer • See BRCA Pathogenic Variant-Positive Management	Pancreas, Prostate, Melanoma • See BRCA Pathogenic Variant-Positive Management
	Unknown or insufficient evidence	Increased risk of ovarian cancer • Consider RRSO at 45–50 y	N/A
BRIP1	Comments: Counsel for risk of autosomal recess carriers of pathogenic/likely pathogenic variants in evidence is insufficient to make a firm recommer about surgery should be held around age 45–50	BRIP1 appears to be sufficient to justify consider lation as to the optimal age for this procedure. Ba	available studies, the lifetime risk of ovarian cancer in tion of risk-reducing salpingo-oophorectomy. The current sed on the current, limited evidence base, a discussion earlier onset ovarian cancer.
CDH1	Increased risk of lobular breast cancer • Screening: Annual mammogram with consideration of tomosynthesis and consider breast MRI with contrast starting at age 30 yf.g • RRM: Evidence insufficient, manage based on family history reducing mastectomy	No increased risk of ovarian cancer	Diffuse gastric cancer • <u>See NCCN Guidelines for Gastric Cancer</u> : Principles of Genetic Risk Assessment for Gastric Cancer Footnotes on GENE-5

RRM: Risk-reducing mastectomy

RRSO: Risk-reducing salpingo-oophorectomy

Footnotes on GENE-5

Continued

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

BRCA1/BRCA2 and Other Genes are recommended

NCCN Guidelines Version 2.2019 Genetic/Familial High-Risk Assessment: Breast and Ovarian

NCCN Guidelines Index
Table of Contents
Discussion

BREAST AND OVARIAN MANAGEMENT BASED ON GENETIC TEST RESULTS a-d

The inclusion of a gene in this table below does not imply the endorsement either for or against multi-gene testing for moderate-penetrance genes.

Gene	Breast Cancer Risk and Management	Ovarian Cancer Risk and Management	Other Cancer Risks and Management
)	Increased risk of breast cancer • Screening: Annual mammogram with	Standi Cancer Nisk and management	
CHEK2	consideration of tomosynthesis and consider breast MRI with contrast age 40 y ^{f.g} • RRM: Evidence insufficient, manage based or family history	No increased risk of ovarian cancer	Colon • See NCCN Guidelines for Genetic/Familial High-Risk. Assessment: Colorectal
		thogenic/likely pathogenic variants. The risks for most mis east cancer appears to be lower. Management should be t	ense variants are unclear but for some pathogenic/likely used on best estimates of cancer risk for the specific pathogenic/
MSH2, MLH1, MSH6, PMS2, EPCAM	Unknown or insufficient evidence for breast cancer risk ^g • Manage based on family history	Increased risk of ovarian cancer • See NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal	Colon, Uterine, Others • See NCCN Guidelines for Genetic/Familial High-Risk. Assessment: Colorectal
NBN	Increased risk of breast cancer • Screening: Annual mammogram with consideration of tomosynthesis and consider breast MRI with contrast age 40 yf.9 • RRM: Evidence insufficient, manage based or family history	Unknown or insufficient evidence for ovarian cancer risk	Unknown or insufficient evidence
			enic/likely pathogenic variant. Although risks for other ating pathogenic/likely pathogenic variants similarly to those with
NF1	Increased risk of breast cancer • Screening: Annual mammogram with consideration of tomosynthesis starting at age 30 y and consider breast MRI with contrast from ages 30–50 yf.g • RRM: Evidence insufficient, manage based or family history	No increased risk of ovarian cancer	Malignant peripheral nerve sheath tumors, GIST, others Recommend referral to <i>NF1</i> specialist for evaluation and management
	Comments: At this time, there are no data to sugges of NF. Consider possibility of false-positive MRI resu	an increased breast cancer risk after age 50 y. Screening i s due to presence of breast neurofibromas.	commendations only apply to individuals with a clinical diagnosis

RRM: Risk-reducing mastectomy

Footnotes on GENE-5

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Continued

BRCA1/BRCA2 and Other Genes are recommended

NCCN Guidelines Version 2.2019 Genetic/Familial High-Risk Assessment: Breast and Ovarian

NCCN Guidelines Index
Table of Contents
Discussion

BREAST AND OVARIAN MANAGEMENT BASED ON GENETIC TEST RESULTS a-d

The inclusion of a gene on this table below does not imply the endorsement either for or against multi-gene testing for moderate-penetrance genes.

<u>Gene</u>	Breast Cancer Risk and Management	Ovarian Cancer Risk and Management	Other Cancer Risks and Management
PALB2	Increased risk of breast cancer • Screening: Annual mammogram with consideration of tomosynthesis and breast MRI with contrast at 30 yf.9 • RRM: Evidence insufficient, manage based on family history	Unknown or insufficient evidence for ovarian cancer risk	Unknown or insufficient evidence
	Comments: Counsel for risk of autosomal rece	sive condition in offspring.	
PTEN	Increased risk of breast cancer • See Cowden Syndrome Management	No increased risk of ovarian cancer	See Cowden Syndrome Management
	Unknown or insufficient evidence for preast cancer risk	Increased risk of ovarian cancer • Consider RRSO at 45–50 y	N/A
RAD51C		n RAD51C appears to be sufficient to justify consi	n available studies, the lifetime risk of ovarian cancer in eration of RRSO. The current evidence is insufficient to make ance base, a discussion about surgery should be held around
	Jnknown or insufficient evidence for preast cancer risk	Increased risk of ovarian cancer • Consider RRSO at 45–50 y	N/A
RAD51D	to be sufficient to justify consideration of RRS0	The current evidence is insufficient to make a firm	s of pathogenic/likely pathogenic variants in RAD51D appears recommendation as to the optimal age for this procedure. e 45–50 y or earlier based on a specific family history of an
STK11	Increased risk of breast cancer • Screening: See NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal • RRM: Evidence insufficient, manage based on family history	Increased risk of non-epithelial ovarian cancer • See NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal	See NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal
TP53	Increased risk of breast cancer • See Li-Fraumeni Syndrome Management	No increased risk of ovarian cancer	See Li-Fraumeni Syndrome Management
			Footnotes on GENE-5

RRM: Risk-reducing mastectomy

RRSO: Risk-reducing salpingo-oophorectomy

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

NCCN Guidelines Version 3.2019 BRCA-Related Breast and/or Ovarian Cancer Syndrome

NCCN Guidelines Index Table of Contents

Discussion

BRCA PATHOGENIC/LIKELY PATHOGENIC VARIANT-POSITIVE MANAGEMENT

WOMEN

· Breast awareness1 starting at age 18 y.

Clinical breast exam, every 6-12 mo,² starting at age 25 y.

Breast screening^{3,4}

- ▶ Age 25–29 y, annua breast MRI⁵ screening with contrast⁶ (or mammogram with consideration of tomosynthesis, only if MRI is unavailable) or individualized based on family history if a breast cancer diagnosis before age 30 is present.
- Age 30-75 y, annual mammogram with consideration of tomosynthesis and breast MRI⁵ screening with contrast.
- Age >75 y, management should be considered on an individual basis.
- > For women with a BRCA pathogenic/likely pathogenic variant who are treated for breast cancer and have not had a bilateral mastectomy, screening with annual mammogram and breast MRI should continue as described above.

Discuss option of risk-reducing mastectomy

- Counseling should include a discussion regarding degree of protection, reconstruction options, and risks. In addition, the family history and residual breast cancer risk with age and life expectancy should be considered during counseling.
- Recommend risk-reducing salpingo-oophorectomy (RRSO), typically between 35 and 40 y, and upon completion of child bearing. Because ovarian cancer onset in patients with BRCAZ pathogenic/likely pathogenic variants is an average of 8–10 years later than in patients with BRCA1 pathogenic/ likely pathogenic variants, it is reasonable to delay RRSO for management of ovarian cancer risk until age 40–45 y in patients with BRCA2 pathogenic/likely pathogenic variants unless age at diagnosis in the family warrants earlier age for consideration of prophylactic surgery. See Risk-Reducing Salpingo-Oophorectomy (RRSO) Protocol in NCCN Guidelines for Ovarian Cancer - Principles of Surgery.
- Counseling includes a discussion of reproductive desires, extent of cancer risk, degree of protection for breast and ovarian cancer, management of menopausal symptoms, possible short-term hormone replacement therapy, and related medical issues.
- Salpingectomy alone is not the standard of care for risk reduction, although clinical trials of interval salpingectomy and delayed opphorectomy are ongoing. The concern for risk-reducing salpingectomy alone is that women are still at risk for developing ovarian cancer. In addition, in premenopausal women, cophorectomy likely reduces the risk of developing breast cancer but the magnitude is uncertain and may be genespecific.
- Limited data suggest that there may be a slightly increased risk of serous uterine cancer among women with a BRCA1 pathogenic/likely pathogenic variant. The clinical significance of these findings is unclear. Further evaluation of the risk of serous uterine cancer in the BRCA population needs to be undertaken. The provider and patient should discuss the risks and benefits of concurrent hysterectomy at the time of RRSO for women with a BRCA1 pathogenic/likely pathogenic variant prior to surgery.
- Address psychosocial, social, and quality-of-life aspects of undergoing risk-reducing mastectomy and/or salpingo-oophorectomy.
- For those patients who have not elected KRSO, transvaginal ultrasound combined with serum CA-125 for ovarian cancer screening, although of uncertain benefit, may be considered at the clinician's discretion starting at age 30-35 y.
- Consider risk reduction agents as options for breast and ovarian cancer, including discussing risks and benefits (See Discussion for details). (See NCCN Guidelines for Breast Cancer Risk Reduction).
- · Consider investigational imaging and screening studies, when available (eg, novel imaging technologies, more frequent screening intervals) in the context of a clinical trial.

Footnotes on next page (BRCA-A 2 of 2)

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Continued

BRCA-A 1 OF 2

Thanks