Early Cervical Cancer: Surgical Conditions Following the LACC Trial

M. Faruk Kose, MD

Acibadem Mehmet Ali Aydinlar University School of Medicine Department of Gynecologic Oncology

Minimally Invasive Surgery DFS and Mortality Rates

Melamed A, N Engl J Med 2018; Ramirez PT, N Engl J Med 2018

MIS vs Open Surgery (SEER Data)

Case# 1225 MIS vs 1236 open surgery

Median FU 45 months

- Lymph Node counts: 20.2/19.2
- Pozitive LN status; 10.7/8.9%
- Parametrial involution; 11.0/9.5%
- Pozitive surgical margine; 5/4.4%
- Death in 90 days; 9.1/5.3% (94/70)
- 4-years OS; in MIS "shorter"

SEER Data OS

MIS vs Open Surgery

Subgroup	Hazard Ratio for Death with Minimally In (95% CI)	wasive Surgery
Surgical approach		
Laparoscopic	<u>↓</u>	1.50 (0.97-2.31)
Robot-assisted		1.61 (1.18-2.21)
Histologic type		
Squamous cell	· · · · · · · · · · · · · · · · · · ·	1.65 (1.17-2.33)
Adenocarcinoma		2.22 (1.08-4.55)
Tumor size		
<2 cm		1.46 (0.70-3.02)
≥2 cm		1.66 (1.19-2.30)
0.5	5 1.0 2.0 4.0	
Minima Surge	ally Invasive Open Surgery Better ery Better	

Survival Factors After MIS (SEER)

Resection width unknown in MIS

Sacrouterine ligament, parametrium (especially anterior parametrium) resection width is insufficient

Surgical margin distance is closer in MIS

Conclusions for SEER Data

Maniplators can cause tumor spread

MIS may be non-inferior in highly experienced surgeons

The results of operations performed during the learning curve may be poor

In this study, the causes of recurrence or death are not clear

Robotic Radical Hysterectomy Metaanalysis

- 26 Non-randomized trials
- According to current knowledge; robotic radical hysterectomy (RRH) is superior to abdominal radical hysterectomy (ARH)
 - Less blood lost
 - Shorter hospital stay
 - Fewer febrile morbiditiy
 - Fewer wound-related complications
 - RH with Robotic and LS are equal in terms of intraoperative and shortterm postoperative outcomes

LACC TRIAL

MIS vs Abdominal RH: LACC Trial

P=0.87 (NS)

- Case #631; Stage IA1 (LVSI pozitive), IA2 or IB1
 - MIS #319 _
 - *Open Surgery #312* _
- Median FU 2.5 Yıl
- 4.5 Years DFS
 - MIS 86.0% _
 - Open Surgery 96.5% _
- 3 Years OS
 - MIS 93.8% _
- - MIS #27 _
 - *Open Surgery #7* _

Open Surgery 99.0% _ Recurrence

LACC Trial DFS

LACC Trial OS

LACC Trial: Letter to the Editor

In the null hypothesis the power should be 90% and can not be 80-85%

LACC: Distribution of Cases by Country

Distribution of Surgeons

There were participating surgeons who had not completed a fellowship in gynecologic oncology, others were general surgeons with a surgical oncology fellowship, and most had not published their results with laparoscopic radical hysterectomy

Bias in Histopathology

Histopathologies		TARH 282 (%)	MIS 291 (%)
Histology	Scuamose	145 (51)	150 (52)
	Adenoca	58 (21)	59 (20)
	Adenoscuamose	12 (4)	11 (4)
	Other	66 (23)	66 (23)
	Loss	1 (0)	5 (2)
Grade	1	29 (10)	34 (11)
	2	113 (40)	115 (40)
	3	61 (22)	61 (21)
	Unknown	79 (28)	81 (28)
Invasion	Superficial	61 (22)	85 (29)
	2/3	73 (26)	50 (17)
	Profundal	56 (20)	64 (22)
	Unknown	92 (33)	92 (32)

Bias in Histopathology

Histopathologies		TARH 282 (%)	MIS 291 (%)
Tumor diameter	<2 cm	89 (32)	95 (33)
	≥2 cm	101(36)	97 (20)
	Unknown	92 (33)	99 (34)
LVSI	Negative	186 (66)	196 (67)
	Positive	81 (29)	70 (24)
	Unknown	15 (5)	25 (9)
Parametriums	Negative	251 (89)	254 (87)
	Positive	11 (4)	19 (7)
	Unknown	20 (7)	18 (6)
Vaginal surgical margin	Negative	248 (88)	258 (89)
	Positive	6 (2)	5 (%)
	Unknown	28 (10)	28 (10)

Unknown Data

Unknown data in open surgery

- Tumor diameter; 33%
- Parametrial involvement; 7%
- Vaginal surgical margin positivity; 10%
- LVSI; 5%
- Unknown data in LS surgery
 - The length of the removed parametrial tissue
- Unknown adjuvant treatment indications

Completed Data Rates

Primary target (DFS)	
Median FU time (min-max)	2.5 years (0.0-6.3)
4.5 Year completion (%)	219/558 (39.2%)
Sufficient information in 4.5 years (%)	59.7%
OS	
Median FU time (min-max)	2.5 years (0.0-6.3)
4.5 Year completion (%)	208/558 (37.3%)
Sufficient information in 4.5 years (%)	54.3%

DFS

• DFS; 80% in high-risk group

GOG 92

- DFS 88% in moderate risk group
- Recurrence 18%

LACC

- DFS 96.5% of patients with stage IB1 in 92% of open surgery arm
- MIS 86.0%

Peters WA, J Clin Oncol 2000; Sedlis A, Gynecol Oncol 1999; Ramirez PT, N Engl J Med 2018; Leitao MM Jr, Int J Gynecol Cancer 2018

Follow-up Times

39.2% of the data is completed in 4.5 years

Median FU only 2.5 years

Results 2 years later significant

The most important example in our field is that the results of the first two years of "GOG 99" do not match the results of the 4th year

Ramirez PT, N Engl J Med 2018; Roberts JA, Gynecol Oncol 1998; Keys HM, Gynecol Oncol 2004

Recurrence Zones

Operation	TARH	TLRH/TRRH
Total recurrences	7	24
Recurrence Zones		
Vaginal cuff	3 (43%)	4 (17%)
Pelvis	0 0(%)	7 (29%)
Abdomen	0 0(%)	1 (4%)
Distant	1 (14%)	2 (8%)
Multiple recurrences	2 (29%)	7 (29%)
Other	1 (14%)	3 (13%)

MIS vs Open Surgery

Result	MIS (101)	Open (282)	р
КТ (%)	17 (16.7)	60 (21.3)	0.32
XRT (%)	20 (10.8)	69 (24.5)	0.28
Recurrence (%)	5 (5.0)	18 (6.4)	0.86

Fig. 2

Overall survival for 383 patient cohort that underwent RH for earlystage cervical carcinoma. This Kaplan-Meier graph depicts the overall survival for women in our cohort stratified by mode of surgical procedure. Because MIS techniques were introduced in later eras, the duration of follow-up was shorter for the MIS group. There was no statistical difference between the 2 groups (log-rank p = .29).

MIS vs Open Surgery

Characteristic	MIS (n = 101)	Open (n = 282)	р
Pelvic lymph nodes harvested, n, mean ± SD	19.4 ± 8.9	16.0 ± 8.3	.001
Pelvic lymph nodes positive, n, mean ± SD	11 (10.9)	24 (8.5)	.55
Margins positive, n (%)	5 (5.0)	13 (4.6)	.54
Perioperative complications, n (%)	15 (17.2)	46 (18.7)	.87
Conversion to laparotomy, n (%)	3 (3.0)	N/A	N/A
EBL, cc3, median	50 (5–500)	500 (37.5–2000)	.001
Perioperative RBC transfusion, n (%)	3 (3.0)	74 (26.2)	.001
Hospital stay, d, mean ± SD	1.9 ± 2.6	4.9 ± 5.3	.001

Diver E, J Minim Invasive Gynecol 2017

Less Radical Surgery

Cases in fifteen years #36; Conization +BPLND

Stage IB1TD 11.7 mmAdenoca 33%Grade 3 14%LVSI 14%

"Cervical conization represents a feasible conservative management of stage IB1 cervical cancer and shows a low risk of relapse, provided that patients are selected carefully.

Conization would be suitable to treat stage IB lesions smaller than

15–20 mm. with pathologic negative lymph nodes."

Maneo A, Gynecol Oncol 2011

Can LACC Trial Explain This Success of Less Radical Surgery?

OF COURSE NOT

WHAT DO WE HAVE TO LEARN FROM LACC TRIAL?

Result

The LACC trial did not respond to the comparison of minimally invasive surgery with open surgery

Surgeon factor appears to be an important factor

No problem for tumors <2 cm

Colpotomy should not be performed in a CO₂ circulating environment to prevent tm spread

Vaginal Closure with EndoGIA

To demonstrate a method of vaginal closure with EndoGIA surgical stapler

Vaginal closure with EndoGIA before the colpotomy provides a safe and easy method to prevent tumor spillage and could improve the unfavorable results related with MIS in patients with cervical cancer

Boyraz G, JMIG 2018

Combined Laparoscopic-vaginal Technique

Case# 1952

- Median FU 99 (range 1-288) months
- The 3-, 4.5-, and 10-year DFS
 - 96.8%, 95.8%, and 93.1% respectively
- The 3-, 4.5-, and 10-year OS
 - 98.5%, 97.8%, and 95.8%, respectively

Combined Laparoscopic-vaginal Technique

- Recurrence location
 - Loco-regional in 50% of cases with recurrence (n=10)
 - Interestingly, 9/20 recurrences occurred more than 39 months after surgery
- This technique with avoidance of spillage and manipulation of tumor cells provides excellent oncologic outcome for patients with early cervical cancer
- Their retrospective data suggest that laparoscopic-vaginal surgery may be oncologically safe and should be validated in further randomized trials

We Learned

Preventing from the tumor spillage during the laparoscopic radical hysterectomy for cervical cancer is very important

For this	We have to seal the fallopian tubes like in the endometrial cancer surgery
reason;	We have to avoid from the colpotomy as usual
	If you perforate with the manipulator DO NOT continue MIS, convert to open surgery

The War Continues!

Thank You for Your Attention!

mfarukkose@gmail.com